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Abstract: This paper explores the geometric relationship between Weyl’s curvature
tensor and the conharmonic tensor in generalized recurrent Finsler spaces. The study
begins with a review of the fundamental definitions and recurrence conditions
governing Finsler geometry. Using tensorial identities and recurrence properties,
several geometric relations are derived to describe how these tensors behave under
specific recurrence transformations. The main results show that the Weyl and
conharmonic tensors are interrelated through certain curvature conditions, leading to
equivalence in their vanishing and recurrence properties under well-defined
constraints. These findings contribute to a deeper understanding of the intrinsic
geometry of generalized recurrent Finsler spaces and offer potential applications in
the study of geometric structures with special curvature properties. Furthermore, the
results may have implications for broader areas in differential geometry and
mathematical physics, where such tensors play a key role in describing the curvature
and topology of manifolds.

Keywords: Weyl’s curvature tensor, conharmonic tensor, generalized recurrent

Finsler spaces, differential geometry.
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I. Introduction

Finsler geometry has gained significant attention due to its broad applications in
differential geometry and mathematical physics. Among the various curvature tensors
that characterize the geometric structure of Finsler spaces, Weyl’s curvature tensor
and the conharmonic tensor play essential roles in describing the intrinsic and extrinsic
properties of such manifolds.

Generalized recurrent Finsler spaces, which extend the classical concept of recurrent
spaces, provide a rich framework for studying the interdependence between different
curvature tensors under specific recurrence conditions. Previous studies have
primarily addressed individual properties of these tensors; however, the relationship
between Weyl’s curvature tensor and the conharmonic tensor in this generalized
setting remains relatively unexplored.

This study aims to investigate the geometric relationship between these two tensors in
generalized recurrent Finsler spaces. By utilizing recurrence conditions, tensorial
identities, and curvature properties, new results are derived that establish equivalence
conditions and interdependence between the tensors. These findings not only
contribute to a deeper understanding of Finsler geometry but also provide a foundation
for further studies in mathematical physics, where curvature tensors are essential in
describing gravitational and geometric phenomena.

In this paper, we investigate the properties of the conharmonic curvature tensor, L]i- Kh

, In the context of Finsler geometry. The study focuses on the generalized recurrent
Finsler spaces and provides new insights into the curvature properties of these spaces,
particularly those with a second-order covariant derivative. The work builds upon
earlier studies, notably by Al-Qashbari, Abdallah, and Al-ssallal, and extends the
concept of generalized recurrent Finsler spaces by incorporating new conditions under
which the curvature tensor remains invariant under certain transformations.

Finsler geometry, an extension of Riemannian geometry, has been extensively studied
for its wide applicability in both mathematics and physics, particularly in the context
of spacetime curvature. A substantial body of work has focused on various properties
of curvature tensors and their implications for higher-dimensional spaces. Among the
key aspects of Finsler geometry, the study of recurrent structures and curvature tensors
plays a pivotal role in understanding the intrinsic geometry of these spaces. Ahsan and
Ali (2014) first investigated some properties of the www-curvature tensor, which
serves as a foundational element in the exploration of Finsler spaces with specific
curvature characteristics. In their 2016 study, Ahsan and Ali expanded on these
properties, providing a deeper analysis of the curvature tensor in the context of general
relativity, particularly the spacetime curvature. This led to a better understanding of
the geometric structures governing the spacetime continuum and set the stage for
further exploration of curvature properties in more general settings, including Finsler
spaces.

In recent years, there has been a surge of interest in the study of higher-order
derivatives and special curvature tensors in Finsler spaces. Abu-Donia et al. (2020)
focused on the w*-curvature tensor in relativistic space-times, exploring its role in the
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analysis of spacetime geometry and its physical implications. The study of special
curvature tensors such as these has contributed to a better understanding of the
underlying geometrical structures, particularly in the context of relativistic physics.
Building on these foundational studies, Al-Qashbari et al. (2024) explored recurrent
Finsler structures, providing higher-order generalizations defined by special curvature
tensors. Their work introduced novel perspectives on the behavior of curvature tensors
under specific constraints and contributed significantly to the development of a
generalized framework for recurrent Finsler spaces. This work aligns with the broader
trend of investigating higher-order derivatives, a direction pursued by Al-Qashbari
and his collaborators, who have extensively studied Berwald’s and Cartan’s higher-
order derivatives in Finsler space, demonstrating their influence on curvature tensor
properties.

The ongoing exploration of decomposition analysis, such as Al-Qashbari et al.'s
(2024) study of Weyl’s curvature tensor via Berwald's derivatives, and the study of
generalized curvature relations, continues to push the boundaries of Finsler geometry.
These studies, along with the works of Misra et al. (2014), Goswami (2017), and
others, have advanced our understanding of Finsler spaces and their curvature
relations, especially in the context of recurrent and generalized structures.

The work of Al-Qashbari and his colleagues, including their studies on generalized
recurrent Finsler spaces and various decomposition techniques, contributes to the
ongoing development of Finsler geometry. Their research on the conharmonic
curvature tensor and its properties in generalized Finsler spaces provides valuable
insights into the intricate relationships between curvature, torsion, and the underlying
geometric structures.

This paper builds on the foundation laid by previous studies, particularly focusing on
the role of conharmonic curvature tensors in generalized recurrent Finsler spaces. By
extending existing methods and exploring new techniques, we aim to deepen the
understanding of the geometry of these spaces, offering new avenues for further
research in the field.

In this paper, we investigate some identities between Weyl’s tensor Wy, and
conharmonic tensor L]i-kh. We first introduce the basic concepts of Weyl’s curvature

tensor and conharmonic tensor Ljy;,. Then, we derive some identities between these
two tensors.
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2. Preliminaries

In this section, we provide the necessary conditions and definitions relevant to the
purpose of this paper. Additionally, the two vectors y; and y' satisfy the following
conditions:

a) yi=9iy . bk Vovi—=5 20 NC) 5=V
d) gir5ji =g,; and ) g/*6) = g’" . (2.1)

The quantities g;; and gY are related as follows:

k

. 1, if i=k
. glk = §k = ’ ’
a) gij9’" =6 {0 L Uf ik . (2.2)

b) gijn =0 and c¢) gij|h=0 .

The h-covariant derivative of second order for an arbitrary vector field with respect
to x* and x/, successively, we get

Xb = aj(xllk) — (XnT + (X)L = (0, X[ )Tiy®. (2:3)
The vector y* and metric function F vanish 1dentlcally under Cartan's covariant

derivative
a) Fp=0 and b) yilh =0. (2.4)

The tensor W]ﬁ(h , the torsion tensor Wﬁc and the deviation tensor Wji are defined
as follows:

L

5 > 2 Zyi . p
M/jlkh: Hjlkh+ﬁH[ ]+( +1)a H[kh]+ (n2— 1)(n h+th+yrathT
Ly .
o (nzlil) (Tl ij & ij + yraijr) ) (25)
i y
]lk o l ( +1) H[]k + 2 { (n 2 1) (Tl Hk yer] T) } p (26)
and W/ =Hj — H5/ — E +1) (0.H] —0;H) y* , respectively. 2.7)

Additionally, assuming that the tensor Wji satisfies the following identities

a) Wey=0 . b) Wi=0, ¢) Wiy =0,

d) g Wi =Wy, e) g Wy =W and f) Wy y*=0 . (2.8)
we have the conharmonic curvature tensor L]i-kh , torsion tensor Lj-k , Ricci tensor Ljy
, curvature vector L , and scalar curvature L satisfying:

a) Lyny! =Lin , b) Ligy* =1Ly , © Ly =Ly

d) Lii=1L , e) Li=L and f) gy Lhn = Lrjen (2.9)

The Cartan third curvature tensor R}kh , Ricci tensor Rjy , the vector Hy , and the

scalar curvature H are defined as:
a) Ry’ =Hy ,b) Rgy =R ,¢c) RI=R and d) Hyy*=m—-1H. (2.10)
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Al-Qashbari and Al-Ssallal [5], as well as Al-Qashbari, Haouse, and Al-Ssallal [6],
introduced and studied the curvature tensor using Berwald’s and Cartan’s first and
second-order derivatives in Finsler space, which are characterized by the condition:

Wienim = 2nWiien + tm (85950 — Sh9j1c) + %Vm(WIégjh —Wigijk) - (2.11)
A Finsler space F,, , in which the curvature tensor W]ﬁ( n satisfies the condition (2.11),
is referred to as the generalized W), -recurrent space and denoted by Gy Win- RF,

Taking the covariant derivative of (2.11) with respect to x! in the context of Cartan's
connection, we obtain:

Wienimit = () Wien + A (Wienyt) + () (8595m — 61951

i (84gjn — 5fizgjk)|l ., %Vm(Wkigjh T Wi{gjk)ll + i]’mH(Wkigjh ~ Wigi )- (2.12)
By applying equations (2.2b) and (2.11) to equation (2.12), we get

Wnpmi = AmiWien + Am (Aszl}m +w(8tgn — Ohgji) + i)/l(wkigjh = W;igjk))

+ tmi1(8k95n — 619 ji) +% Vit (Wigjn — Wigji) + %Ym(Wkigjh B Whigjk)ll :
Or

Wiienmu = (A + AmA) Wi, + (g + Amis) (8Egn — 8£9 k)

+iym(Wkigjh ) Wfl;gjk)ll + i(/lm)/z + Vi) (Wi gjn = Widij)- (2.13)
The equation (2.13), can be expressed as:

Wiinimi = @muWiin + bt (8kgjn — 61.95x) + icml(Wkigjh — Wigji)

+1Vm(Wigjn = Wigji),, - (2.14)
where ay; = Amp + AmArs by = Wnpp + Amy and ¢y = (A1 + ¥mp) @€ NON-zEro covariant
tensors field of second order and 7y, is non-zero covariant victor of first order,
respectively.

Definition 2.1. In Finsler space, which the Wely’s projective curvature tensor Wﬁ(h
satisfies the condition (2.14) is called the generalization generalized W)j,-birecurrent

space and the tensor will be called a generalization generalized h-birecurrent space.
These space and tensor denote them briefly by G 2ndl/l/| n-BRE, and G*™*h- BR ,

respectively.

We consider an n-dimensional Finsler space F,, the Weyls projective curvature
tensor Wi, satisfies the condition (2.11) and (2.14), These spaces denoted by

G*W,,-RF, and
G*"W,,-BRF,, , respectively.
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3. Relationship Between Wely’s Curvature Tensor W]i-kh and Conharmonic

Tensor L]‘: kh

Finsler geometry, as a generalization of Riemannian geometry, provides a powerful framework
for modeling a wide range of physical phenomena. In Finsler spaces, the curvature properties of
the space are characterized by various curvature tensors, among which Weyl and the
conharmonic tensor L]i-kh play a significant role. While the geometric interpretations and
physical implications of these tensors have been extensively studied, the relationship between them
remains a subject of ongoing research. This paper aims to investigate the connection between
Weyl’s curvature tensor and the conharmonic tensor L]i- «n In Finsler spaces. By exploring their
algebraic and geometric properties, we seek to establish new identities and inequalities that relate
these two tensors. Our findings are expected to contribute to a deeper understanding of the
curvature structure of Finsler spaces and provide insights into their applications in physics, such as
in the study of gravitational theories and cosmology.

Some properties of ﬁ{h curvature tensor was proposed by Al-Qashbari, Abdallah
and Al-ssallal. For (n = 4) a Riemannian space, Weyl defined the conharmonic
tensor Lj-kh often known as the Weyl conharmonic tensor, as

. . 1 . . 1 . .
in = Likn + 5 (81 Rix = gjnRk) == (8k Rin — 9j Rh) - (3.1
By taking the h — covariant derivative of (3.1), with respect to x™, we obtain:
. . 1 . . 1 » .
Wiinim = Lixnim + 5 (8h Rik — gjnRi )|m —~(8k Rin — gjx RR )Im : (3.2)

Using (2.2b), in the equation (3.2) can be written as
enim = Liknim + % (8h Rikjm — 9jnRiym ) — % (& Rinjm — Gjk Rhym ) - (33

By substituting equations (2.11) and (3.1) into (3.3), we obtain:

Linim + %(5;1 Rikpm — 9jnRim ) — % (8k Rinym — 9jk Riym )

= AmLjxn + %Am(fsril Rix — gjnRi) — %Am(‘slic Rin = gji Ri) + tm(8%gjn — 6191 )

F iym(wlégjh - Wigjr) - (3.4
The equation (3.4), can be expressed as:

Lonim = AmLign + m (89 5n — 8h9j1) + iVm(Wlégjh — Wigjk)

= %(5;1 Rji — gjnRi )Im + %(511; Rin — 9jk Rfil)|m + %Am(5fiz Rjx — gjnR},)

— <A (8k Rin — g RE). (3.5)
Definition of the Space

The above equation is defined on an n-dimensional differentiable Riemannian
manifold (M, g) equipped with a Levi-Civita connection and the associated
curvature tensors.
All tensorial quantities appearing in the equation such as g;; , 67, R;;, R'; , and L ;4
are smooth tensor fields on the manifold.

9
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The symbol (-),,, denotes covariant differentiation with respect to the Levi-Civita
connection.

The functions A,,,, U,,, and y,,are smooth covector fields on M.

Thus, the equation is formulated entirely in the tensor algebra of the Riemannian
manifold (M, g).

This demonstrates that

Lixnim = AmLiin + tm (85 gjn — 8h9jx ) + %Vm(Wkigjh ~ Wigji) - (3.6)
If and only if

(8% Rix — gjnRi )Im = Am(6h R — gjnRi )
and (8L Rjn — gjx R,il)lm = Am(8L Rin — gjx RL) - (3.7)

In conclusion the proof of theorem is completed, we can determine

Theorem 3.1. In the space GzndL|h-RFn , the conharmonic curvature tensor Lj-kh

represents a generalized recurrent Finsler space, provided that the condition (3.7) is
satisfied.

By transvecting equation (3.5) with ¥/ and utilizing equations (2.9a), (2.4b), (2.1a)
and (2.10a), we obtain the following result

Linim = AmLicn + b (8kyn — 85yic) + %Vm(WkiYh ~Wiyi) = % (85 Hy. — ynRic )|m
+ % (8k H = yiRR ), + %Am(Sfil Hy = ¥R} ) = i/lm(alic Hp — yikRE). (3.8)

This demonstrates that

. . . . 1 . .
entm = AmLicn + Hm (8hYk — 8kvn) + 3 ¥m(Wivn = Wiy ) (3.9)
If and only if
(5liz Hy — ynRj )|m Y. Am(&il Hy. — ynRi ) 3

and (8L Hy, — yxRL), = An(8L Hy — yiRL) (3.10)

|m

Therefore, the proof of theorem is completed, we can say
Theorem 3.2. In the space GzndL|h-RFn, the torsion tensor L', (Conharmonic

curvature tensor L§ xn) represents a generalized recurrent Finsler space, provided that

the condition (3.10) is satisfied.
By transvecting equation (3.8) with y* and utilizing equations n = 4, (2.9b), (2.4b),

(2.1b), (2.8a), (2.1¢) and (2.10d), we obtain the following result
im = AmLh + tm (v'yn = 84F?) = Tym(WiF?) = 3 (385 H — yaRL YY),
+2 (v Hp ~ F2R} ), + 5 Am (304 H = yuRi y*) = < Am(y'Hy — F2RY,). (3.11)
This demonstrates that

. . . . 1 .
him = AmLhy + tm(SRF2 = y'yn) + S vm(WAF?) (3.12)

10
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If and only if
(365 H — yuRLY*),,, = An(38L H — yaRLY")
and (y'H, — FZR,il)lm = Am(yiH, — F?RL) . (3.13)

Therefore, the proof of theorem is completed, we can say

Theorem 3.3. In the space GzndL|h-RFn, deviation tensor L% represents a
generalized recurrent Finsler space if the tensors (35,‘;H — ynRE yk) and

(yiHh —F ZR,il) are generalized recurrent Finsler spaces.

By contracting the indices i and h in equations (3.5), (3.8), and (3.11), and utilizing

equations (n=4), (2.2a), (2.1a), (2.1b), (2.8b), (2.8¢c), (2.8d), (2.10c), (2.10d) and
(2.1c), in conjunction with (2.9¢), (2.9d), and (2.9¢), we obtain the following result:

1 1 1
Likpm = AmLje + (0 = Wi Gjic + 3¥m (W) =5 (0 = DRjgm + 2 (Rixe = g R)|m

+= (= DAmRje — < An(Ric — g R) (3.14)
This demonstrates that
1
Ligjm = Am Ly + (1 = Mumgji + ZVm(Vij) : (3.15)
If and only if

Ritm = AmRit
and (Rj — gjxR) . = Am(Rjc = g R) - (3.16)
and Ly = Amli + (1= ntim Yie =5 (nHy = yiRE), |+ 2 (Hy = yieR)jm

+ %Am(nHk — yiRi.) - %Am(Hk — ykR) . (3.17)

This demonstrates that

Lipm = AmL + (1 = )i yic - (3.18)
If and only if

(nHy — yiRlic)lm = %flm(nHk ~ YiRi. )
and (Hy, — 3R pn = Am(Hy — yiR). (3.19)
In the last

Lim = AL + (1 = n)pF? =~ (3nH — ViRE V") + =(3H — F?R)y,
1 1 1 }
e S R T e (G H —SEZ R} (3.20)

This demonstrates that

Lim = AmL + (1 — )y F2. (3.21)

11
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If and only if
(3nH —yiRiy*),,, = Am(3nH — yuRLY"Y)
and (3H — F?R);;m = 4,,(3H — F2R).. (3.22)

In conclusion the proof of theorem is completed, we can say

Theorem 3.4. In the space GzndL|h-RFn , the Ricci tensor Lj , vector Ly and scalar

L are defined in equations (3.15), (3.18), and (3.21), respectively, if and only if the
conditions in equations (3.16), (3.19), and (3.22) are satisfied.

By transvecting equations (3.5) with g;, and utilizing equations (2.1d), (2.2b), (2.2¢),
(2.8d), and (2.91), we obtain the following result

Ly jicnim = AmLyjien + b (9rx9jn — 9rngj) + iVm(ergjh — Wrn8jx)

T %(gthjk — gjnRrk )Im + %(grkth — gjk R )Im + %Am(gthjk ~ gjnRrr)

= %Am (9riRin = gjic Ren) - (3.23)
This demonstrates that

Ly jinim = AmLrjin + bm(Grc9jn = Grnjx) + iym(ergjh — Wrngijk) - (3.24)
If and only if

(9rnRjk — GjnRri )Im = Am(GrnRik — ginRei)
and (gkRjn — 9jk Ren )Im = A (9riRin = Gjxc Ren) - (3.25)
Therefore, the proof of theorem is completed, we can say

Theorem 3.5. In the space GzndL|h—RF n » the associate tensor Lj,ip, (Conharmonic
curvature tensor L;-kh ) represents a generalized recurrent Finsler space if the

condition in equation (3.25) is satisfied.

We introduce a new class of Finsler spaces, namely, generalized-L,-birecurrent
spaces. These spaces extend the concept of birecurrence to a broader context and
exhibit interesting geometric properties. In this study, we analyze the curvature
tensor of these spaces and establish several characterization theorems. Specifically,
we define B, B, as the covariant derivative of second order.

By taking the h — covariant derivative of equation (3.1) with respect to x™ and x!,
respectively, we obtain the following result.

. . 1 . . 1 . .
Wiinimit = Liknjmi +5 (8% Ry — gjnRE )Imll +te (6k Rin — gk RE) (3.26)

Im|L

Equation (3.26) can be rewritten as follows.
Winmi = Lixamy + %(5;1 Rixmit — 9jnRhymp) + %(&lc Rinpmit — ji Rhpmp ) - (3:27)
Similarly, by applying equations (2.14) and (3.1) in (3.27), we obtain the result

12
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Lnjmy + %(5;1 Rjeimit — 9jnRijmy1 ) + % (8 Rinjmyi — 9jx Rhjmii )
= Qo Ly + 5 @i (8 R = gjnRE ) + %aml (8k Rin = 9jxc RE) + byt (8k gjn = 819 i)
+icml(Wlégjh ~ Wigje) + iym(Wkigjh — Wigji )Il'
Alternatively, this can be expressed as:
Linimi = @miLien + b (8% gjn — 61.95x) + icml(Wkigjh —Wigj)

1 . . 1 . . 1 . .
+ Ym(Wigjn = Wﬁgjk)ll =(6nRj— gthllc)|m|l —=(8k Rin — g Rfll)|m|l

1 - - 1 - i
+2 @t (84 R = gjnRi ) + 2 amu (8 Rin — gj R - (3.28)
This demonstrates that

. . » » 1 . .
Linimin = @mLben + b (8% gjn — 6h9jx) + Zcmz(Wégjh — Wigjx)

+5¥m(Wigjn — Wige), (3.29)
If and only if

(85 Rie — gjnRic )Imll = (8} Rix — gjnRE)
and (8 Rin = gjiRi )y, = @i (8k Rin = gjic RE) (3.30)

In conclusion the proof of theorem i1s completed, we can determine

Theorem 3.6. In the space G2“dL|h—BRFrl , the conharmonic curvature tensor Lj-kh

defines a generalized birecurrent Finsler space if and only if the condition in equation
(3.30) 1s satisfied.

By transvecting condition (3.28) with y/, and utilizing equations (2.9a), (2.4b),
(2.1a), (2.1c) and (2.10a), we obtain the following result.

Linmit = @miLien + bt (8% Y — 84 yie) + %le(Wkiyh — Wiyx)

. %(5;1 Hy. = ynRi )|m|l N % (8% Hn — yiRY, )|m|l g %aml(&il Hy = ynR})

u, %aml(&i Hy — Yleiz) + iYm(WkiJ’h — Wiy )Il . (3.31)
This demonstrates that

Linpmp = @muLien + bt (65 yn — 6 yie) + %le(Wkiyh — Wiy )

+ 5 ¥m(Wivn = Wivi ), - (332)
If and only if

(85 Hi — ynRi )|m|l = @y (8} He — yuRE)
and (8 Hp = YiRp) = @m(8k Hn — YR} ) - (3.33)

Therefore, the proof of theorem is completed, we can say

13
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Theorem 3.7. In the space GzndL|h-BRFn, the h — covariant derivative of
second-order for the torsion tensor Li, (Conharmonic curvature tensor Ljﬂkh)

defines a generalized birecurrent Finsler space if and only if the condition in
equation (3.33) is satisfied.

By transvecting condition (3.31) with y*, and applying (n = 4), along with
equations (2.9b), (2.4a), (2.4b), (2.1b), (2.82), (2.1¢), and (2.10d), we obtain the
following result.

Lymit = @milh + b (v yn = 85F2) = 5 cqu(WiF?) = ym(WiF?),,
— (3L H —yREY®) == OV Hy = F2RE), 1+ 5 ami(365 H — yaREY*)

+ =y (Y Hn — F2R}, ). (3.34)

[m|l

This demonstrates that

Liymit = @milh + bru(y' yn = 84F2) = 5 emu(WiF?) =5 ym(WiF?), . (3.35)
If and only if

(38hH — YrREY* ),y = @i (384 H = yaREYS)
and (y'H, — FZR,il)lm” = @ (y'H, — F2R)) . (3.36)

Therefore, the proof of theorem is completed, we can say

Theorem 3.8. In the space GzndL|h—BRFn , the projective deviation tensor
L represents a generalized birecurrent Finsler space if the tensors (36,"1H =

yrRL y* ) and ( y'H, — F 2R,"l) are generalized birecurrent Finsler spaces.

By contracting the indices i and h in equations (3.28), (3.31), and (3.34), and

utilizing equations (n=4), (2.2a), (2.1a), (2.1b), (2.8b), (2.8¢), (2.8d), (2.10c), (2.10d)

and (2.1c¢), along with the relations in equations (2.9¢), (2.9d), and (2.9¢), we obtain

the following result.

1
Likjmi = @miLj + (0 = Dbpy gji + Zcmlwk += 7 YmWikn — (1 MW Rjkmit
1 1

This demonstrates that

Ligpmit = @il + (0 = Dby Gpic + 3 CmiWie + 7 Vi Wi (3.38)
If and only if

Riximi = amiRj

(Rix — gk R )lm” = am(Rix —9gjxR)- (3.39)
And

Lijmp = @mili + (1 = )by yi — %(nHk — yiRk )|m|l s % (H = YiR )myt

+ = g (nHy = YiRE) + = @ (Hi — ViR ) (3.40)

14
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This demonstrates that

Lipmpp = @l + (1 = 1)byy vy (3.41)
If and only if

(nH) — J’iRzic)m” = apy(nHy = yiRL)
and (Hy — ykR))pmy = amu(Hi — YR ) . (3.42)
In the last

Limt = @il + (= DbmF? =2 (3nH = yiRL %), — ¢ BH = F2R)jm

+ %aml(SnH —yiRLy*) + %aml(yiHi — F2R) . (3.43)
This demonstrates that

Limji = @il + (0 — Dby F2. (3.44)
If and only if

(3nH — YR, Y*) . = ana(3nH — yiRiY")
and (3H — F?R) ;= am(3H — F?R) . (3.45)

Therefore, the proof of theorem is completed, we can say

Theorem 3.9. In the space GzndL|h-BRFn, the Ricci tensor Ljy , the vector Ly and
the scalar L are defined in equations (3.38), (3.41), and (3.44), respectively, provided
that the conditions (3.39), (3.42), and (3.45) are satisfied.

By transvecting equation (3.28) with g;. and applying equations (2.1d), (2.2¢),
(2.8d), and (2.91), we obtain the following result:

1
Lyjknimit = AmiLlrjkn + bm (9rk 9jn — Grngji) + Zcml(ergjh — Wyngii)

+% Ym(ergjh - thgjk )|l - %(grh Rjk - gthrk) %(grkth - gjk Rrh)

Imlt

|m|l

+%aml (grh Rjx — gjnRrk ) + %aml (grkth — Jjk Rrn ) (3.46)
This demonstrates that

Ly jicnpmit = GmiLrjkn + bru(Gr Gjn — Grngji) + icml(ergjh — Wyngjk)

+3 Ym(Weegjn = Wongji) (3.47)
If and only if

(grn Rix = gjnRo )Imll = a1 (grn Rix = gjnRer)
and  (g,4Rjn — 9jic Ren),, = Gou(GriRin — Gk Ren) - (3.48)

|m|l

Therefore, the proof of theorem is completed, we can say

15
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Theorem 3.10. In the space GzndLm-BRFn, the associate tensor Lj,,p, (Conharmonic

curvature tensor Ly,) characterizes a generalized birecurrent Finsler space, if

condition (3.48) is satisfied.

16
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4. Conclusions

In this study, we investigated the geometric relationship between Weyl’s curvature
tensor and the conharmonic tensor within the framework of generalized recurrent
Finsler spaces. By applying recurrence conditions and tensorial identities, several
new relations were established, leading to a better understanding of the intrinsic
curvature properties of these spaces.

The main findings indicate that the behavior of Weyl’s tensor and the conharmonic
tensor is deeply interconnected under specific geometric constraints, resulting in
conditions for their equivalence and vanishing properties. These results provide
significant insights into the structure of generalized recurrent Finsler geometry and
contribute to the broader study of curvature theory in differential geometry.

Future work may focus on extending these results to other curvature tensors,
exploring their applications in mathematical physics, and investigating higher-order

recurrence conditions to uncover further geometric properties.
5. Recommendations

Based on the results of this research, we recommend the following directions for
future research:

1. Explore other types of decomposition: Investigate different decomposition
schemes and their corresponding geometric interpretations.

2. Investigate the physical implications: Explore the physical implications of the
decomposition results, particularly in the context of field theories and cosmology.
3. Develop numerical methods: Develop numerical methods for computing the
decomposed tensors and analyzing their properties.

17
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