
 

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

 

 

 

 

The Relationship Between Weyl’s Curvature Tensor and 

The Coharmonic Tesdor in Generalized Recurrent Finsler 

Spaces 

 

Adel Mohammed Ali Al-Qashbari 1,2    

1 Dept. of Math's., Faculty of Educ. Aden, Univ. of Aden, Aden, Yemen 

2 Dept. of Med. Eng.‚ Faculty of the Engineering and Computers, 

 Univ. of Science & Technology, Aden‚ Yemen 

Email: adel.math.edu@aden.net   &   a.alqashbari@ust.edu 

 

Fahmi Ahmed Mothana AL-ssallal 3 

 

3 Dept. of Math's., Faculty of Educ. Aden, Univ. of Aden, Aden, Yemen 

Email: fahmiassallald55@gmail.com 

 

Corresponding Author: Adel Mohammed Ali Al-Qashbari 

  

 

 

 

 

 

 

 

mailto:adel.math.edu@aden.net
mailto:fahmiassallald55@gmail.com


 

4 
 

Abstract: This paper explores the geometric relationship between Weyl’s curvature 

tensor and the conharmonic tensor in generalized recurrent Finsler spaces. The study 

begins with a review of the fundamental definitions and recurrence conditions 

governing Finsler geometry. Using tensorial identities and recurrence properties, 

several geometric relations are derived to describe how these tensors behave under 

specific recurrence transformations. The main results show that the Weyl and 

conharmonic tensors are interrelated through certain curvature conditions, leading to 

equivalence in their vanishing and recurrence properties under well-defined 

constraints. These findings contribute to a deeper understanding of the intrinsic 

geometry of generalized recurrent Finsler spaces and offer potential applications in 

the study of geometric structures with special curvature properties. Furthermore, the 

results may have implications for broader areas in differential geometry and 

mathematical physics, where such tensors play a key role in describing the curvature 

and topology of manifolds. 

Keywords: Weyl’s curvature tensor, conharmonic tensor, generalized recurrent 

Finsler spaces, differential geometry. 
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I. Introduction 

 Finsler geometry has gained significant attention due to its broad applications in 

differential geometry and mathematical physics. Among the various curvature tensors 

that characterize the geometric structure of Finsler spaces, Weyl’s curvature tensor 

and the conharmonic tensor play essential roles in describing the intrinsic and extrinsic 

properties of such manifolds. 

Generalized recurrent Finsler spaces, which extend the classical concept of recurrent 

spaces, provide a rich framework for studying the interdependence between different 

curvature tensors under specific recurrence conditions. Previous studies have 

primarily addressed individual properties of these tensors; however, the relationship 

between Weyl’s curvature tensor and the conharmonic tensor in this generalized 

setting remains relatively unexplored. 

This study aims to investigate the geometric relationship between these two tensors in 

generalized recurrent Finsler spaces. By utilizing recurrence conditions, tensorial 

identities, and curvature properties, new results are derived that establish equivalence 

conditions and interdependence between the tensors. These findings not only 

contribute to a deeper understanding of Finsler geometry but also provide a foundation 

for further studies in mathematical physics, where curvature tensors are essential in 

describing gravitational and geometric phenomena. 

In this paper, we investigate the properties of the conharmonic curvature tensor, 𝐿𝑗𝑘ℎ
𝑖  

, in the context of Finsler geometry. The study focuses on the generalized recurrent 

Finsler spaces and provides new insights into the curvature properties of these spaces, 

particularly those with a second-order covariant derivative. The work builds upon 

earlier studies, notably by Al-Qashbari, Abdallah, and Al-ssallal, and extends the 

concept of generalized recurrent Finsler spaces by incorporating new conditions under 

which the curvature tensor remains invariant under certain transformations. 

Finsler geometry, an extension of Riemannian geometry, has been extensively studied 

for its wide applicability in both mathematics and physics, particularly in the context 

of spacetime curvature. A substantial body of work has focused on various properties 

of curvature tensors and their implications for higher-dimensional spaces. Among the 

key aspects of Finsler geometry, the study of recurrent structures and curvature tensors 

plays a pivotal role in understanding the intrinsic geometry of these spaces. Ahsan and 

Ali (2014) first investigated some properties of the www-curvature tensor, which 

serves as a foundational element in the exploration of Finsler spaces with specific 

curvature characteristics. In their 2016 study, Ahsan and Ali expanded on these 

properties, providing a deeper analysis of the curvature tensor in the context of general 

relativity, particularly the spacetime curvature. This led to a better understanding of 

the geometric structures governing the spacetime continuum and set the stage for 

further exploration of curvature properties in more general settings, including Finsler 

spaces. 

In recent years, there has been a surge of interest in the study of higher-order 

derivatives and special curvature tensors in Finsler spaces. Abu-Donia et al. (2020) 

focused on the w∗-curvature tensor in relativistic space-times, exploring its role in the 
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analysis of spacetime geometry and its physical implications. The study of special 

curvature tensors such as these has contributed to a better understanding of the 

underlying geometrical structures, particularly in the context of relativistic physics. 

Building on these foundational studies, Al-Qashbari et al. (2024) explored recurrent 

Finsler structures, providing higher-order generalizations defined by special curvature 

tensors. Their work introduced novel perspectives on the behavior of curvature tensors 

under specific constraints and contributed significantly to the development of a 

generalized framework for recurrent Finsler spaces. This work aligns with the broader 

trend of investigating higher-order derivatives, a direction pursued by Al-Qashbari 

and his collaborators, who have extensively studied Berwald’s and Cartan’s higher-

order derivatives in Finsler space, demonstrating their influence on curvature tensor 

properties. 

The ongoing exploration of decomposition analysis, such as Al-Qashbari et al.'s 

(2024) study of Weyl’s curvature tensor via Berwald's derivatives, and the study of 

generalized curvature relations, continues to push the boundaries of Finsler geometry. 

These studies, along with the works of Misra et al. (2014), Goswami (2017), and 

others, have advanced our understanding of Finsler spaces and their curvature 

relations, especially in the context of recurrent and generalized structures. 

The work of Al-Qashbari and his colleagues, including their studies on generalized 

recurrent Finsler spaces and various decomposition techniques, contributes to the 

ongoing development of Finsler geometry. Their research on the conharmonic 

curvature tensor and its properties in generalized Finsler spaces provides valuable 

insights into the intricate relationships between curvature, torsion, and the underlying 

geometric structures. 

This paper builds on the foundation laid by previous studies, particularly focusing on 

the role of conharmonic curvature tensors in generalized recurrent Finsler spaces. By 

extending existing methods and exploring new techniques, we aim to deepen the 

understanding of the geometry of these spaces, offering new avenues for further 

research in the field. 

In this paper, we investigate some identities between Weyl’s tensor 𝑊𝑗𝑘ℎ
𝑖  and 

conharmonic tensor 𝐿𝑗𝑘ℎ
𝑖 . We first introduce the basic concepts of Weyl’s curvature 

tensor and conharmonic tensor 𝐿𝑗𝑘ℎ
𝑖 . Then, we derive some identities between these 

two tensors. 
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2. Preliminaries  

 In this section, we provide the necessary conditions and definitions relevant to the 

purpose of this paper. Additionally, the two vectors 𝑦𝑖 and  𝑦𝑖  satisfy the following 

conditions: 
         a)   𝑦𝑖 = 𝑔𝑖𝑗 𝑦

𝑗   ,               b)   𝑦𝑖 𝑦𝑖 = 𝐹2  ,     c)   𝛿𝑗
𝑘𝑦𝑗 = 𝑦𝑘  

         d)   𝑔𝑖𝑟 𝛿𝑗
𝑖 = 𝑔𝑟𝑗    and      e)  𝑔𝑗𝑘𝛿𝑘

𝑖 = 𝑔𝑗𝑖  .                                                                     (2.1)         

The quantities  𝑔𝑖𝑗 and 𝑔𝑖𝑗 are related as follows: 

         a)   𝑔𝑖𝑗 𝑔𝑗𝑘 = 𝛿𝑖
𝑘 =  { 

1   ,      𝑖𝑓      𝑖 = 𝑘       ,
0   ,      𝑖𝑓      𝑖 ≠ 𝑘       .

                                                                       (2.2) 

         b)   𝑔𝑖𝑗|ℎ 
= 0    and   c)   𝑔𝑖𝑗

|ℎ
= 0   . 

The h-covariant derivative of second order for an arbitrary vector field with respect 

to 𝑥𝑘 and 𝑥𝑗, successively, we get  

         𝑋|𝑘|𝑗
𝑖 = 𝜕𝑗(𝑋|𝑘

𝑖 ) − (𝑋|𝑟
𝑖 )Γ𝑘𝑗 

∗𝑟 + (𝑋|𝑘
𝑟 )Γ𝑟𝑗 

∗𝑖 − (𝜕𝑗𝑋|𝑘
𝑖 )Γ𝑗𝑠 

∗𝑖y 
𝑠 .                                                        (2.3)                        

The vector 𝑦𝑖  and metric function 𝐹 vanish identically under Cartan's covariant 

derivative 
         a)   𝐹|ℎ = 0   and   b)  𝑦𝑖

|ℎ
= 0  .                                                                                       (2.4) 

The tensor 𝑊𝑗𝑘ℎ
𝑖  , the torsion tensor  𝑊𝑗𝑘

𝑖   and  the deviation tensor 𝑊𝑗
𝑖   are defined 

as follows: 

         𝑊𝑗𝑘ℎ
𝑖 =  𝐻𝑗𝑘ℎ

𝑖 +
2 𝛿𝑗

𝑖

(𝑛+1)
𝐻[ℎ𝑘] +

2 𝑦𝑖

(𝑛+1)
𝜕̇𝑗𝐻[𝑘ℎ] +  

𝛿𝑘
𝑖

(𝑛2−1)
( 𝑛 𝐻𝑗ℎ + 𝐻ℎ𝑗 + 𝑦𝑟𝜕̇𝑗𝐻ℎ𝑟 

         − 
𝛿ℎ

𝑖

(𝑛2−1)
(𝑛 𝐻𝑗𝑘 + 𝐻𝑘𝑗 + 𝑦𝑟𝜕̇𝑗𝐻𝑘𝑟)    ,                                                                            (2.5)                                    

         𝑊𝑗𝑘
𝑖 = 𝐻𝑗𝑘

𝑖 +
𝑦𝑖

(𝑛+1)
𝐻[𝑗𝑘] + 2 { 

𝛿[ 𝑗
𝑖

(𝑛2−1)
(𝑛 𝐻𝑘] − 𝑦𝑟𝐻𝑘] 𝑟) }   ,                                          (2.6)                             

and   𝑊𝑗
𝑖 = 𝐻𝑗

𝑖 − 𝐻𝛿𝑗
𝑖 −

1

(𝑛+1)
(𝜕̇𝑟𝐻𝑗

𝑟 − 𝜕̇𝑗𝐻) 𝑦𝑖  ,  respectively.                                            (2.7)                                          

Additionally, assuming that the tensor 𝑊𝑗
𝑖 satisfies the following identities 

         a)   𝑊𝑘
𝑖 𝑦𝑘 = 0    ,    b)  𝑊𝑖

𝑖 = 0  ,                 c)   𝑊𝑘
𝑖  𝑦𝑖 

 = 0 ,  

         d)   𝑔𝑖𝑟 𝑊𝑗
𝑖 = 𝑊𝑟𝑗

  ,  e)   𝑔𝑗𝑘𝑊𝑗𝑘
 = 𝑊  and    f)   𝑊𝑗𝑘

  𝑦𝑘 = 0   .                                       (2.8)                           

we have the conharmonic curvature tensor 𝐿𝑗𝑘ℎ
𝑖  , torsion tensor 𝐿𝑗𝑘 

𝑖 , Ricci tensor  𝐿𝑗𝑘  

, curvature vector 𝐿𝑘  , and scalar curvature  𝐿 satisfying: 
         a)   𝐿𝑗𝑘ℎ

𝑖  𝑦𝑗 = 𝐿𝑘ℎ 
𝑖   ,    b)   𝐿𝑘ℎ

𝑖  𝑦𝑘 = 𝐿ℎ 
𝑖    ,     c)   𝐿𝑗𝑘𝑖

𝑖 = 𝐿𝑗𝑘 

         d)   𝐿𝑘𝑖
𝑖 = 𝐿𝑘    ,           e)   𝐿𝑖

𝑖 = 𝐿       and       f)   𝑔𝑖𝑟 𝐿𝑗𝑘ℎ
𝑖 = 𝐿𝑟𝑗𝑘ℎ

 .                                (2.9)  

The Cartan third curvature tensor 𝑅𝑗𝑘ℎ
𝑖  , Ricci tensor 𝑅𝑗𝑘 , the vector 𝐻𝑘  , and the 

scalar curvature 𝐻 are defined as: 
         a)   𝑅𝑗𝑘 𝑦

𝑗 = 𝐻𝑘  ,  b)   𝑅𝑗𝑘 𝑦𝑘 = 𝑅𝑗  ,  c)   𝑅𝑖
𝑖 = 𝑅   and   d)   𝐻𝑘  𝑦𝑘 = (𝑛 − 1)𝐻  .      (2.10) 
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Al-Qashbari and Al-Ssallal [5], as well as Al-Qashbari, Haouse, and Al-Ssallal [6], 

introduced and studied the curvature tensor using Berwald’s and Cartan’s first and 

second-order derivatives in Finsler space, which are characterized by the condition: 

        𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝑊𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)  .                           (2.11) 

A Finsler space Fn , in which the curvature tensor 𝑊𝑗𝑘ℎ
𝑖  satisfies the condition (2.11), 

is referred to as the generalized 𝑊|ℎ-recurrent space and denoted by G 
2nd 𝑊|ℎ- RFn 

. 

Taking the covariant derivative of (2.11) with respect to 𝑥𝑙 in the context of Cartan's 

connection, we obtain: 
         𝑊𝑗𝑘ℎ|𝑚|𝑙

𝑖 = (𝜆𝑚|𝑙)𝑊𝑗𝑘ℎ
𝑖 + 𝜆𝑚(𝑊𝑗𝑘ℎ|𝑙

𝑖 ) + (µ𝑚|𝑙)(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘 ) 

         +µ𝑚(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘)
|𝑙

+
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
+

1

4
𝛾𝑚|𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ).           (2.12) 

By applying equations (2.2b) and (2.11) to equation (2.12), we get 

         𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝜆𝑚|𝑙W𝑗𝑘ℎ

𝑖 + 𝜆𝑚 (𝜆𝑙𝑊𝑗𝑘ℎ
𝑖 + µ𝑙(𝛿𝑘

𝑖 𝑔𝑗ℎ − 𝛿ℎ
𝑖 𝑔𝑗𝑘) +

1

4
𝛾𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘))             

              + µ𝑚|𝑙(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
 𝛾𝑚|𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) +

1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
  . 

Or 
         𝑊𝑗𝑘ℎ|𝑚|𝑙

𝑖 = (𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙)𝑊𝑗𝑘ℎ
𝑖 + (µ𝑚|𝑙 + 𝜆𝑚µ𝑙)(𝛿𝑘

𝑖 𝑔𝑗ℎ − 𝛿ℎ
𝑖 𝑔𝑗𝑘) 

         +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
+

1

4
(𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙)(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘).                                 (2.13)  

The equation (2.13), can be expressed as: 

         𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝑊𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘) 

         +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
 .                                                                                             (2.14) 

where 𝑎𝑚𝑙 = 𝜆𝑚|𝑙 + 𝜆𝑚𝜆𝑙 ,  𝑏𝑚𝑙 = µ𝑚|𝑙 + 𝜆𝑚µ𝑙 and 𝑐𝑚𝑙 = (𝜆𝑚𝛾𝑙 + 𝛾𝑚|𝑙) are non-zero covariant 

tensors field of second order and  𝛾𝑚 is non-zero covariant  victor of  first order, 

respectively.  

Definition 2.1. In Finsler space, which the Wely’s projective curvature tensor 𝑊𝑗𝑘ℎ
𝑖  

satisfies the condition (2.14) is called the generalization generalized 𝑊|ℎ-birecurrent 

space and the tensor will be called a generalization generalized ℎ-birecurrent space.  

These space and tensor denote them briefly by 𝐺 
2𝑛𝑑𝑊|ℎ-𝐵𝑅𝐹𝑛 and 𝐺 

2𝑛𝑑h- 𝐵𝑅 , 

respectively. 

We consider an n-dimensional Finsler space 𝐹𝑛 , the Weyls projective curvature 

tensor 𝑊𝑗𝑘ℎ
𝑖   satisfies the condition (2.11) and (2.14), These spaces denoted by 

G 
2nd𝑊|ℎ-RFn and 

 G 
2nd𝑊|ℎ-BRFn , respectively. 
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3. Relationship Between Wely’s Curvature Tensor 𝑾𝒋𝒌𝒉
𝒊    and Conharmonic 

Tensor 𝑳𝒋𝒌𝒉
𝒊  

 Finsler geometry, as a generalization of Riemannian geometry, provides a powerful framework 

for modeling a wide range of physical phenomena. In Finsler spaces, the curvature properties of 

the space are characterized by various curvature tensors, among which Weyl and the 

conharmonic tensor 𝐿𝑗𝑘ℎ
𝑖   play a significant role. While the geometric interpretations and 

physical implications of these tensors have been extensively studied, the relationship between them 

remains a subject of ongoing research. This paper aims to investigate the connection between 

Weyl’s curvature tensor and the conharmonic tensor 𝐿𝑗𝑘ℎ
𝑖  in Finsler spaces. By exploring their 

algebraic and geometric properties, we seek to establish new identities and inequalities that relate 

these two tensors. Our findings are expected to contribute to a deeper understanding of the 

curvature structure of Finsler spaces and provide insights into their applications in physics, such as 

in the study of gravitational theories and cosmology. 

Some properties of 𝑊𝑗𝑘ℎ
𝑖  curvature tensor was proposed by Al-Qashbari, Abdallah 

and Al-ssallal. For (𝑛 = 4) a Riemannian space, Weyl defined the conharmonic 

tensor 𝐿𝑗𝑘ℎ
𝑖  often known as the Weyl conharmonic tensor, as  

         𝑊𝑗𝑘ℎ
𝑖 = 𝐿𝑗𝑘ℎ

𝑖 +
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 ) −

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )  .                                          (3.1) 

By taking the ℎ − covariant derivative of (3.1), with respect to  𝑥𝑚, we obtain:  

         𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝐿𝑗𝑘ℎ|𝑚

𝑖 +
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 )

|𝑚
−

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ −  𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚
 .                             (3.2) 

Using (2.2b), in the equation (3.2) can be written as 

         𝑊𝑗𝑘ℎ|𝑚
𝑖 = 𝐿𝑗𝑘ℎ|𝑚

𝑖 +
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘|𝑚 − 𝑔𝑗ℎ𝑅𝑘|𝑚 
𝑖 ) −

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ|𝑚 − 𝑔𝑗𝑘 𝑅ℎ|𝑚 
𝑖 ) .                      (3.3) 

By substituting equations (2.11) and (3.1) into (3.3), we obtain: 

         𝐿𝑗𝑘ℎ|𝑚
𝑖 +

1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘|𝑚 − 𝑔𝑗ℎ𝑅𝑘|𝑚 
𝑖 ) −

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ|𝑚 − 𝑔𝑗𝑘 𝑅ℎ|𝑚 
𝑖 ) 

         = 𝜆𝑚𝐿𝑗𝑘ℎ
𝑖 +

1

2
𝜆𝑚(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 ) − 

1

6
𝜆𝑚(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 ) + 𝜇𝑚(𝛿𝑘

𝑖 𝑔𝑗ℎ − 𝛿ℎ
𝑖 𝑔𝑗𝑘 ) 

         +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) .                                                                                                 (3.4) 

The equation (3.4), can be expressed as: 

          𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐿𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 )  

         − 
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 )

|𝑚
+

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚
 +  

1

2
𝜆𝑚(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 ) 

         −
1

6
𝜆𝑚(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 ) .                                                                                                 (3.5) 

Definition of the Space 

The above equation is defined on an 𝑛-dimensional differentiable Riemannian 

manifold (𝑀, 𝑔) equipped with a Levi-Civita connection and the associated 

curvature tensors. 

All tensorial quantities appearing in the equation such as 𝑔𝑖𝑗 , 𝛿𝑗
𝑖, 𝑅𝑖𝑗, 𝑅  𝑗

𝑖  , and 𝐿  𝑗𝑘ℎ
𝑖  

are smooth tensor fields on the manifold. 
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The symbol (⋅)∣𝑚 denotes covariant differentiation with respect to the Levi-Civita 

connection. 

The functions 𝜆𝑚, 𝜇𝑚, and 𝛾𝑚are smooth covector fields on 𝑀. 

Thus, the equation is formulated entirely in the tensor algebra of the Riemannian 

manifold (𝑀, 𝑔). 

This demonstrates that 

         𝐿𝑗𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐿𝑗𝑘ℎ

𝑖 + 𝜇𝑚(𝛿𝑘
𝑖 𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘 ) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) .                              (3.6) 

If and only if  

          (𝛿ℎ 
𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 

𝑖 )
|𝑚

= 𝜆𝑚(𝛿ℎ 
𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 

𝑖 )  , 

and   (𝛿𝑘 
𝑖 𝑅𝑗ℎ −  𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚

= 𝜆𝑚(𝛿𝑘 
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) .                                                              (3.7) 

In conclusion the proof of theorem is completed, we can determine 

Theorem 3.1. In the space G2ndL|h-RFn , the conharmonic curvature tensor  𝐿𝑗𝑘ℎ
𝑖  

represents a generalized recurrent Finsler space, provided that the condition (3.7) is 

satisfied. 

By transvecting equation (3.5) with 𝑦𝑗 and utilizing equations (2.9a), (2.4b), (2.1a) 

and (2.10a), we obtain the following result  

          𝐿𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐿𝑘ℎ

𝑖 + 𝜇𝑚(𝛿𝑘
𝑖 𝑦ℎ − 𝛿ℎ

𝑖 𝑦𝑘) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 ) −

1

2
(𝛿ℎ 

𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 
𝑖 )

|𝑚
 

        +
1

6
(𝛿𝑘 

𝑖 𝐻ℎ −  𝑦𝑘𝑅ℎ 
𝑖 )

|𝑚
+

1

2
𝜆𝑚(𝛿ℎ 

𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 
𝑖 ) −

1

6
𝜆𝑚(𝛿𝑘 

𝑖 𝐻ℎ −  𝑦𝑘𝑅ℎ 
𝑖 ) .                     (3.8) 

This demonstrates that 

         𝐿𝑘ℎ|𝑚
𝑖 = 𝜆𝑚𝐿𝑘ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝑦𝑘 − 𝛿𝑘

𝑖 𝑦ℎ) +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 ) .                                      (3.9) 

If and only if  

         (𝛿ℎ 
𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 

𝑖 )
|𝑚

= 𝜆𝑚(𝛿ℎ 
𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 

𝑖 )  , 

and   (𝛿𝑘 
𝑖 𝐻ℎ − 𝑦𝑘𝑅ℎ 

𝑖 )
|𝑚

= 𝜆𝑚(𝛿𝑘 
𝑖 𝐻ℎ − 𝑦𝑘𝑅ℎ 

𝑖 ) .                                                                  (3.10) 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.2. In the space G2ndL|h-RFn , the torsion tensor 𝐿𝑘ℎ
𝑖  (Conharmonic 

curvature tensor 𝐿𝑗𝑘ℎ
𝑖 ) represents a generalized recurrent Finsler space, provided that 

the condition (3.10) is satisfied. 

By transvecting equation (3.8) with 𝑦𝑘 and utilizing equations 𝑛 = 4, (2.9b), (2.4b), 

(2.1b), (2.8a), (2.1c) and (2.10d), we obtain the following result  

         𝐿ℎ|𝑚
𝑖 = 𝜆𝑚𝐿ℎ

𝑖 + 𝜇𝑚(𝑦 
𝑖𝑦ℎ − 𝛿ℎ

𝑖 𝐹 
2) −

1

4
𝛾𝑚(𝑊ℎ

𝑖𝐹 
2) −

1

2
(3𝛿ℎ 

𝑖 𝐻 − 𝑦ℎ𝑅𝑘 
𝑖 𝑦𝑘)

|𝑚
 

         +
1

6
(𝑦 

𝑖𝐻ℎ − 𝐹 
2𝑅ℎ 

𝑖 )
|𝑚

+
1

2
𝜆𝑚(3𝛿ℎ 

𝑖 𝐻 − 𝑦ℎ𝑅𝑘 
𝑖 𝑦𝑘) −

1

6
𝜆𝑚(𝑦 

𝑖𝐻ℎ − 𝐹 
2𝑅ℎ 

𝑖 ).                  (3.11)                                              

This demonstrates that 

         𝐿ℎ|𝑚
𝑖 = 𝜆𝑚𝐿ℎ

𝑖 + 𝜇𝑚(𝛿ℎ
𝑖 𝐹 

2 − 𝑦 
𝑖𝑦ℎ) +

1

4
𝛾𝑚(𝑊ℎ

𝑖𝐹 
2)  .                                                     (3.12) 
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If and only if  

         (3𝛿ℎ 
𝑖 𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘)
|𝑚

= 𝜆𝑚(3𝛿ℎ 
𝑖 𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘)   , 

and   (𝑦 
𝑖𝐻ℎ − 𝐹 

2𝑅ℎ 
𝑖 )

|𝑚
= 𝜆𝑚(𝑦 

𝑖𝐻ℎ − 𝐹 
2𝑅ℎ 

𝑖 )  .                                                                      (3.13) 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.3. In the space G2ndL|h-RFn , deviation tensor  𝐿ℎ
𝑖  represents a 

generalized recurrent Finsler space if the tensors (3𝛿ℎ 
𝑖 𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘) and 

(𝑦𝑖𝐻ℎ − 𝐹2𝑅ℎ
𝑖 ) are generalized recurrent Finsler spaces. 

By contracting the indices i and  h  in equations (3.5), (3.8), and (3.11), and utilizing 

equations (n=4), (2.2a), (2.1a), (2.1b), (2.8b), (2.8c), (2.8d), (2.10c), (2.10d) and 

(2.1c), in conjunction with (2.9c), (2.9d), and (2.9e), we obtain the following result: 

        𝐿𝑗𝑘|𝑚
 = 𝜆𝑚𝐿𝑗𝑘

 + (1 − 𝑛)𝜇𝑚 𝑔𝑗𝑘 +
1

4
𝛾𝑚(𝑊𝑗𝑘

 ) −
1

2
(𝑛 − 1)𝑅𝑗𝑘|𝑚 +

1

6
(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅)

|𝑚
  

         +
1

2
(𝑛 − 1)𝜆𝑚𝑅𝑗𝑘 −

1

6
𝜆𝑚(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅) .                                                                        (3.14) 

This demonstrates that 

         𝐿𝑗𝑘|𝑚
 = 𝜆𝑚 𝐿𝑗𝑘

 + (1 − 𝑛)𝜇𝑚𝑔𝑗𝑘 +
1

4
𝛾𝑚(𝑊𝑗𝑘

 ) .                                                             (3.15) 

If and only if  

         𝑅𝑗𝑘|𝑚 = 𝜆𝑚𝑅𝑗𝑘  

and   (𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅)
|𝑚

= 𝜆𝑚(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅) .                                                                          (3.16) 

and   𝐿𝑘|𝑚
 = 𝜆𝑚𝐿𝑘

 + (1 − 𝑛)𝜇𝑚 𝑦𝑘 −
1

2
(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖 )
|𝑚

+
1

6
(𝐻𝑘 − 𝑦𝑘𝑅)|𝑚 

         + 
1

2
𝜆𝑚(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖 ) −
1

6
𝜆𝑚( 𝐻𝑘 − 𝑦𝑘𝑅)  .                                                                   (3.17) 

This demonstrates that 

         𝐿𝑘|𝑚
 = 𝜆𝑚𝐿𝑘

 + (1 − 𝑛)𝜇𝑚 𝑦𝑘  .                                                                                      (3.18) 

If and only if 

          (𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 
𝑖 )

|𝑚
=

1

2
𝜆𝑚(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖  )  

and   (𝐻𝑘 − 𝑦𝑘𝑅)|𝑚 = 𝜆𝑚( 𝐻𝑘 − 𝑦𝑘𝑅) .                                                                               (3.19) 

In the last 

         𝐿|𝑚 = 𝜆𝑚𝐿 
 + (1 − 𝑛)𝜇𝑚𝐹2 −

1

2
(3𝑛𝐻 − 𝑦𝑖𝑅𝑘 

𝑖 𝑦𝑘)
|𝑚

+
1

6
(3𝐻 − 𝐹 

2𝑅)|𝑚 

         +
1

2
𝜆𝑚(3𝑛𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘 ) −
1

6
𝜆𝑚(𝑦 

𝑖𝐻𝑖 −  𝐹 
2𝑅) .                                                          (3.20) 

This demonstrates that 

         𝐿|𝑚 = 𝜆𝑚𝐿 
 + (1 − 𝑛)𝜇𝑚𝐹2.                                                                                           (3.21) 
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If and only if 

         (3𝑛𝐻 − 𝑦𝑖𝑅𝑘 
𝑖 𝑦𝑘)

|𝑚
= 𝜆𝑚(3𝑛𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘)   , 

and   (3𝐻 − 𝐹 
2𝑅)|𝑚 = 𝜆𝑚(3H − 𝐹 

2𝑅) .                                                                                (3.22)                      

In conclusion the proof of theorem is completed, we can say 

Theorem 3.4. In the space G2ndL|h-RFn , the Ricci tensor 𝐿𝑗𝑘 , vector 𝐿𝑘 and scalar 

𝐿 are defined in equations (3.15), (3.18), and (3.21), respectively, if and only if the 

conditions in equations (3.16), (3.19), and (3.22) are satisfied. 

By transvecting equations (3.5) with gir and utilizing equations (2.1d), (2.2b), (2.2c), 

(2.8d), and (2.9f), we obtain the following result 

         𝐿𝑟𝑗𝑘ℎ|𝑚
 = 𝜆𝑚𝐿𝑟𝑗𝑘ℎ

 + 𝜇𝑚(𝑔𝑟𝑘
 𝑔𝑗ℎ − 𝑔𝑟ℎ

 𝑔𝑗𝑘) +
1

4
𝛾𝑚(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘)  

         − 
1

2
(𝑔𝑟ℎ

 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 
 )

|𝑚
+

1

6
(𝑔𝑟𝑘

 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ 
 )

|𝑚
+ 

1

2
𝜆𝑚(𝑔𝑟ℎ

 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 
 ) 

         −
1

6
𝜆𝑚(𝑔𝑟𝑘

 𝑅𝑗ℎ −  𝑔𝑗𝑘 𝑅𝑟ℎ 
 ) .                                                                                           (3.23)                                                    

This demonstrates that 

          𝐿𝑟𝑗𝑘ℎ|𝑚
 = 𝜆𝑚𝐿𝑟𝑗𝑘ℎ

 + 𝜇𝑚(𝑔𝑟𝑘
 𝑔𝑗ℎ − 𝑔𝑟ℎ

 𝑔𝑗𝑘) +
1

4
𝛾𝑚(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘) .                   (3.24) 

If and only if  

         (𝑔𝑟ℎ
 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 

 )
|𝑚

 = 𝜆𝑚(𝑔𝑟ℎ
 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 

 )   , 

and   (𝑔𝑟𝑘
 𝑅𝑗ℎ −  𝑔𝑗𝑘 𝑅𝑟ℎ 

 )
|𝑚

= 𝜆𝑚(𝑔𝑟𝑘
 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ 

 ) .                                                        (3.25) 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.5. In the space G2ndL|h-RFn  , the associate tensor 𝐿𝑗𝑟𝑘ℎ  (Conharmonic 

curvature tensor 𝐿𝑗𝑘ℎ
𝑖  ) represents a generalized recurrent Finsler space if the 

condition in equation (3.25) is satisfied. 

We introduce a new class of Finsler spaces, namely, generalized-L|h-birecurrent 

spaces. These spaces extend the concept of birecurrence to a broader context and 

exhibit interesting geometric properties. In this study, we analyze the curvature 

tensor of these spaces and establish several characterization theorems. Specifically, 

we define ℬmℬl as the covariant derivative of second order.  

By taking the h − covariant derivative of equation (3.1) with respect to 𝑥𝑚 and  𝑥𝑙 , 
respectively, we obtain the following result. 

         𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝐿𝑗𝑘ℎ|𝑚|𝑙

𝑖 +
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 )

|𝑚|𝑙
+

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙
 .                    (3.26) 

Equation (3.26) can be rewritten as follows. 

         𝑊𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝐿𝑗𝑘ℎ|𝑚|𝑙

𝑖 +
1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘|𝑚|𝑙 − 𝑔𝑗ℎ𝑅𝑘|𝑚|𝑙 
𝑖 )

 
+

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ|𝑚|𝑙 − 𝑔𝑗𝑘 𝑅ℎ|𝑚|𝑙 
𝑖 ) .        (3.27) 

Similarly, by applying equations (2.14) and (3.1) in (3.27), we obtain the result 
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        𝐿𝑗𝑘ℎ|𝑚|𝑙
𝑖 +

1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘|𝑚|𝑙 − 𝑔𝑗ℎ𝑅𝑘|𝑚|𝑙 
𝑖 )

 
+

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ|𝑚|𝑙 − 𝑔𝑗𝑘 𝑅ℎ|𝑚|𝑙 
𝑖 )

 
 

         = 𝑎𝑚𝑙𝐿𝑗𝑘ℎ
𝑖 +

1

2
𝑎𝑚𝑙(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 ) +

1

6
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )  + 𝑏𝑚𝑙 (𝛿𝑘

𝑖  𝑔𝑗ℎ − 𝛿ℎ
𝑖 𝑔𝑗𝑘)  

          +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) + 

1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 )|𝑙

.  

Alternatively, this can be expressed as: 

          𝐿𝑗𝑘ℎ|𝑚|𝑙
𝑖 =  𝑎𝑚𝑙𝐿𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙 (𝛿𝑘
𝑖  𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) 

         +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
−

1

2
(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 )

|𝑚|𝑙
−

1

6
(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )

|𝑚|𝑙
 

          +
1

2
𝑎𝑚𝑙(𝛿ℎ 

𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 
𝑖 ) +

1

6
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 
𝑖 )  .                                                 (3.28) 

This demonstrates that 

         𝐿𝑗𝑘ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐿𝑗𝑘ℎ

𝑖 + 𝑏𝑚𝑙 (𝛿𝑘
𝑖  𝑔𝑗ℎ − 𝛿ℎ

𝑖 𝑔𝑗𝑘) +
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘 ) 

        +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑔𝑗ℎ − 𝑊ℎ
𝑖𝑔𝑗𝑘)

|𝑙
.                                                                                                (3.29) 

If and only if  

         (𝛿ℎ 
𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 

𝑖 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝛿ℎ 
𝑖 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑘 

𝑖 )   , 

and   (𝛿𝑘 
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝛿𝑘 
𝑖 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅ℎ 

𝑖 ) .                                                          (3.30)           

In conclusion the proof of theorem is completed, we can determine 

Theorem 3.6. In the space G2ndL|h-BRFn  , the conharmonic curvature tensor  𝐿𝑗𝑘ℎ
𝑖  

defines a generalized birecurrent Finsler space if and only if the condition in equation 

(3.30) is satisfied. 

By transvecting condition (3.28) with 𝑦𝑗, and utilizing equations (2.9a), (2.4b), 

(2.1a), (2.1c) and (2.10a), we obtain the following result. 

         𝐿𝑘ℎ|𝑚|𝑙
𝑖 =  𝑎𝑚𝑙𝐿𝑘ℎ

𝑖 + 𝑏𝑚𝑙 (𝛿𝑘
𝑖  𝑦ℎ − 𝛿ℎ

𝑖  𝑦𝑘) + 
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 ) 

         − 
1

2
(𝛿ℎ 

𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 
𝑖 )

|𝑚|𝑙
−

1

6
(𝛿𝑘 

𝑖 𝐻ℎ − 𝑦𝑘𝑅ℎ 
𝑖 )

|𝑚|𝑙
+

1

2
𝑎𝑚𝑙(𝛿ℎ 

𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 
𝑖 ) 

         + 
1

6
𝑎𝑚𝑙(𝛿𝑘 

𝑖 𝐻ℎ −  𝑦𝑘𝑅ℎ 
𝑖 ) +

1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 )|𝑙

  .                                                     (3.31) 

This demonstrates that 

         𝐿𝑘ℎ|𝑚|𝑙
𝑖 =  𝑎𝑚𝑙𝐿𝑘ℎ

𝑖 + 𝑏𝑚𝑙 (𝛿𝑘
𝑖  𝑦ℎ − 𝛿ℎ

𝑖  𝑦𝑘) + 
1

4
𝑐𝑚𝑙(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 ) 

         +
1

4
𝛾𝑚(𝑊𝑘

𝑖𝑦ℎ − 𝑊ℎ
𝑖𝑦𝑘 )|𝑙

 .                                                                                                (3.32)  

If and only if 

         (𝛿ℎ 
𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 

𝑖 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝛿ℎ 
𝑖 𝐻𝑘 − 𝑦ℎ𝑅𝑘 

𝑖 )   , 

and   (𝛿𝑘 
𝑖 𝐻ℎ − 𝑦𝑘𝑅ℎ 

𝑖 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝛿𝑘 
𝑖 𝐻ℎ − 𝑦𝑘𝑅ℎ 

𝑖 ) .                                                                 (3.33)  

Therefore, the proof of theorem is completed, we can say 
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Theorem 3.7. In the space G2ndL|h-BRFn  , the h − covariant derivative of 

second-order for the torsion tensor 𝐿𝑘ℎ
𝑖  (Conharmonic curvature tensor 𝐿𝑗𝑘ℎ

𝑖  ) 

defines a generalized birecurrent Finsler space if and only if the condition in 

equation (3.33) is satisfied. 

By transvecting condition (3.31) with 𝑦𝑘, and applying (𝑛 = 4), along with 

equations (2.9b), (2.4a), (2.4b), (2.1b), (2.8a), (2.1c), and (2.10d), we obtain the 

following result. 

         𝐿ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐿ℎ

𝑖 + 𝑏𝑚𝑙 (𝑦 
𝑖 𝑦ℎ − 𝛿ℎ

𝑖 𝐹 
2) −

1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝐹 
2) −

1

4
 𝛾𝑚(𝑊ℎ

𝑖𝐹 
2)

|𝑙
 

         −
1

2
(3𝛿ℎ 

𝑖 𝐻 − 𝑦ℎ𝑅𝑘 
𝑖 𝑦𝑘)

|𝑚|𝑙
−

1

6
(𝑦 

𝑖𝐻ℎ − 𝐹 
2𝑅ℎ 

𝑖 )
|𝑚|𝑙

+
1

2
𝑎𝑚𝑙(3𝛿ℎ 

𝑖 𝐻 − 𝑦ℎ𝑅𝑘 
𝑖 𝑦𝑘 ) 

         +
1

6
𝑎𝑚𝑙(𝑦 

𝑖𝐻ℎ − 𝐹 
2𝑅ℎ 

𝑖 ) .                                                                                                 (3.34)                                                                                                            

This demonstrates that 

         𝐿ℎ|𝑚|𝑙
𝑖 = 𝑎𝑚𝑙𝐿ℎ

𝑖 + 𝑏𝑚𝑙(𝑦 
𝑖 𝑦ℎ − 𝛿ℎ

𝑖 𝐹 
2) −  

1

4
𝑐𝑚𝑙(𝑊ℎ

𝑖𝐹 
2) −

1

4
 𝛾𝑚(𝑊ℎ

𝑖𝐹 
2)

|𝑙
 .                   (3.35) 

If and only if  

         (3𝛿ℎ 
𝑖 𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘)
|𝑚|𝑙

= 𝑎𝑚𝑙(3𝛿ℎ 
𝑖 𝐻 − 𝑦ℎ𝑅𝑘 

𝑖 𝑦𝑘 )   , 

and   (𝑦 
𝑖𝐻ℎ − 𝐹 

2𝑅ℎ 
𝑖 )

|𝑚|𝑙
= 𝑎𝑚𝑙(𝑦 

𝑖𝐻ℎ − 𝐹 
2 𝑅ℎ 

𝑖 )  .                                                                 (3.36) 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.8. In the space G2ndL|h-BRFn  , the projective deviation tensor 

𝐿ℎ
𝑖  represents a generalized birecurrent Finsler space if the tensors (3𝛿ℎ 

𝑖 𝐻 −

𝑦ℎ𝑅𝑘 
𝑖 𝑦𝑘  ) and  ( 𝑦𝑖𝐻ℎ − 𝐹2𝑅ℎ 

𝑖 ) are generalized birecurrent Finsler spaces. 

By contracting the indices i and  h in equations (3.28), (3.31), and (3.34), and 

utilizing equations (n=4), (2.2a), (2.1a), (2.1b), (2.8b), (2.8c), (2.8d), (2.10c), (2.10d) 

and (2.1c), along with the relations in equations (2.9c), (2.9d), and (2.9e), we obtain 

the following result. 

         𝐿𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑗𝑘

 + (𝑛 − 1)𝑏𝑚𝑙 𝑔𝑗𝑘 +
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 +
1

4
 𝛾𝑚𝑊𝑗𝑘|𝑙

 −
1

2
(1 − 𝑛)𝑅𝑗𝑘|𝑚|𝑙 

         −
1

6
(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅 

 )
|𝑚|𝑙

+
1

2
(1 − 𝑛)𝑎𝑚𝑙𝑅𝑗𝑘 +

1

6
𝑎𝑚𝑙(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅 

 ).                                  (3.37) 

This demonstrates that 

         𝐿𝑗𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑗𝑘

 + (𝑛 − 1)𝑏𝑚𝑙 𝑔𝑗𝑘 +
1

4
𝑐𝑚𝑙𝑊𝑗𝑘

 +
1

4
 𝛾𝑚𝑊𝑗𝑘|𝑙

  .                                       (3.38) 

If and only if   

         𝑅𝑗𝑘|𝑚|𝑙 = 𝑎𝑚𝑙𝑅𝑗𝑘   , 

         (𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅 
 )

|𝑚|𝑙
= 𝑎𝑚𝑙(𝑅𝑗𝑘 − 𝑔𝑗𝑘 𝑅 

 ) .                                                                       (3.39) 

And  

         𝐿𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑘 

 + (1 − 𝑛)𝑏𝑚𝑙 𝑦𝑘 −
1

2
(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖 )
|𝑚|𝑙

−
1

6
(𝐻𝑘 − 𝑦𝑘𝑅 

 )|𝑚|𝑙 

         +
1

2
𝑎𝑚𝑙(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖 ) +
1

6
𝑎𝑚𝑙( 𝐻𝑘 − 𝑦𝑘𝑅 

 )  .                                                                (3.40)                                                                                             
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This demonstrates that 

         𝐿𝑘|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑘 

 + (1 − 𝑛)𝑏𝑚𝑙 𝑦𝑘  .                                                                                 (3.41)  

If and only if 

         (𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 
𝑖 )

|𝑚|𝑙
= 𝑎𝑚𝑙(𝑛𝐻𝑘 − 𝑦𝑖𝑅𝑘 

𝑖 )   , 

and   (𝐻𝑘 − 𝑦𝑘𝑅 
 )|𝑚|𝑙 = 𝑎𝑚𝑙( 𝐻𝑘 − 𝑦𝑘𝑅 

 )  .                                                                            (3.42) 

In the last  

         𝐿|𝑚|𝑙 = 𝑎𝑚𝑙𝐿 
 + (𝑛 − 1)𝑏𝑚𝑙𝐹2 −

1

2
(3𝑛𝐻 − 𝑦𝑖𝑅𝑘 

𝑖 𝑦𝑘)
|𝑚|𝑙

−
1

6
(3H − 𝐹 

2𝑅)|𝑚|𝑙 

         + 
1

2
𝑎𝑚𝑙(3𝑛𝐻 − 𝑦𝑖𝑅𝑘 

𝑖 𝑦𝑘) +
1

6
𝑎𝑚𝑙(𝑦 

𝑖𝐻𝑖 − 𝐹 
2𝑅)  .                                                       (3.43) 

This demonstrates that 

         𝐿|𝑚|𝑙 = 𝑎𝑚𝑙𝐿 + (𝑛 − 1)𝑏𝑚𝑙𝐹2 .                                                                                      (3.44) 

If and only if  

         (3𝑛𝐻 − 𝑦𝑖𝑅𝑘 
𝑖 𝑦𝑘)

|𝑚|𝑙
= 𝑎𝑚𝑙(3𝑛𝐻 − 𝑦𝑖𝑅𝑘 

𝑖 𝑦𝑘)   , 

and   (3H − 𝐹 
2𝑅)|𝑚|𝑙  = 𝑎𝑚𝑙(3𝐻 − 𝐹 

2𝑅)  .                                                                           (3.45) 

Therefore, the proof of theorem is completed, we can say 

Theorem 3.9. In the space G2ndL|h-BRFn, the Ricci tensor 𝐿𝑗𝑘 , the vector 𝐿𝑘 and 

the scalar 𝐿 are defined in equations (3.38), (3.41), and (3.44), respectively, provided 

that the conditions (3.39), (3.42), and (3.45) are satisfied. 

By transvecting equation (3.28) with gir and applying equations (2.1d), (2.2c), 

(2.8d), and (2.9f), we obtain the following result: 

         𝐿𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟𝑘
  𝑔𝑗ℎ − 𝑔𝑟ℎ

 𝑔𝑗𝑘) +
1

4
𝑐𝑚𝑙(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘) 

         +
1

4
 𝛾𝑚(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘 )|𝑙

−
1

2
(𝑔𝑟ℎ 

 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 
 )

|𝑚|𝑙
− 

1

6
(𝑔𝑟𝑘

 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ
 )

|𝑚|𝑙
   

         +
1

2
𝑎𝑚𝑙(𝑔𝑟ℎ 

 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 
 ) +

1

6
𝑎𝑚𝑙(𝑔𝑟𝑘

 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ 
 ).                                              (3.46) 

This demonstrates that 

         𝐿𝑟𝑗𝑘ℎ|𝑚|𝑙
 = 𝑎𝑚𝑙𝐿𝑟𝑗𝑘ℎ

 + 𝑏𝑚𝑙(𝑔𝑟𝑘
  𝑔𝑗ℎ − 𝑔𝑟ℎ

 𝑔𝑗𝑘) +
1

4
𝑐𝑚𝑙(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘) 

         +
1

4
 𝛾𝑚(𝑊𝑟𝑘

 𝑔𝑗ℎ − 𝑊𝑟ℎ
 𝑔𝑗𝑘 )|𝑙

.                                                                                         (3.47) 

If and only if  

         (𝑔𝑟ℎ 
 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 

 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝑔𝑟ℎ 
 𝑅𝑗𝑘 − 𝑔𝑗ℎ𝑅𝑟𝑘 

 )    , 

and   (𝑔𝑟𝑘
 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ

 )
|𝑚|𝑙

= 𝑎𝑚𝑙(𝑔𝑟𝑘
 𝑅𝑗ℎ − 𝑔𝑗𝑘 𝑅𝑟ℎ

 )    .                                                   (3.48) 

Therefore, the proof of theorem is completed, we can say 
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Theorem 3.10. In the space G2ndL|h-BRFn, the associate tensor 𝐿𝑗𝑟𝑘ℎ  (Conharmonic 

curvature tensor 𝐿𝑗𝑘ℎ
𝑖 ) characterizes a generalized birecurrent Finsler space, if 

condition (3.48) is satisfied. 
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4. Conclusions  

In this study, we investigated the geometric relationship between Weyl’s curvature 

tensor and the conharmonic tensor within the framework of generalized recurrent 

Finsler spaces. By applying recurrence conditions and tensorial identities, several 

new relations were established, leading to a better understanding of the intrinsic 

curvature properties of these spaces. 

The main findings indicate that the behavior of Weyl’s tensor and the conharmonic 

tensor is deeply interconnected under specific geometric constraints, resulting in 

conditions for their equivalence and vanishing properties. These results provide 

significant insights into the structure of generalized recurrent Finsler geometry and 

contribute to the broader study of curvature theory in differential geometry. 

Future work may focus on extending these results to other curvature tensors, 

exploring their applications in mathematical physics, and investigating higher-order 

recurrence conditions to uncover further geometric properties. 

5. Recommendations 

Based on the results of this research, we recommend the following directions for 

future research: 

1. Explore other types of decomposition: Investigate different decomposition 

schemes and their corresponding geometric interpretations. 

2. Investigate the physical implications: Explore the physical implications of the 

decomposition results, particularly in the context of field theories and cosmology. 

3. Develop numerical methods: Develop numerical methods for computing the 

decomposed tensors and analyzing their properties. 
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