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Abstract 

The more critical infrastructures, financial services and IoT systems are using digital 

ecosystems, the more people have wanted to have continuous authentication 

processes that are sensitive to privacy. Conventional methods like fixed passwords 

and one time biometrics are becoming susceptible to a spoofing attack, credential 

theft, and session hijacking. To handle those issues, this paper promotes a single 

framework that combines behavioral biometrics, federated learning, as well as Zero 

Trust as the foundations of continuous authentication. This is because behavioral 

modalities like keystroke dynamics, mouse movements, gestures and motion signals 

give dynamic identity traits that are difficult to forge. Federated learning guarantees 

privacy protection because raw biometric data are only stored on user devices and 

that global model refinement is achieved using safe parameter aggregation. The 

system uses trust-scoring engine to dynamically scale access privileges in relation 

to live indicators of conduct and context-sensitive risk indicators. Comparison with 

benchmark datasets: HMOG, Buffalo Keystroke, and Touchalytics shows that the 

proposed framework is more accurate, with an Equal Error Rate (EER) of only 7 

percent, lower False Acceptance and Rejection Rates, and real-time latency of less 

than 200 ms. A comparative study proves that both security and usability have 

become much more advanced than state of the art. The work can provide a scalable, 

versatile, and privacy-respecting next-generation continuous authentication 

solution, with potential practical use in finance, healthcare, and internet of things 

domains as well as defense. 

Keywords: Behavioral Biometrics, Federated Learning, Zero Trust Architecture 

(ZTA),  Continuous Authentication, Privacy-Preserving Security. 
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I. INTRODUCTION 

The accelerated digital transformation has amplified the need to deploy secure 

scalable and privacy-aware authentication systems across vital infrastructure, 

financial services, and developing 5G/IoT ecosystems. Conventional authentication, 

e.g. one-time biometrics or simple passwords, is becoming more prone to spoofing, 

session hijacking and credential theft [1], [2], [3],[4]. Recent breakthroughs in zero-

trust architecture (ZTA) recommend the ongoing verification of identity and access 

at each tier, so no actor is trusted as such [5], [7]. Parallel to that, behavioral 

biometrics, including keystroke dynamics, mouse interactions, and mobile motion 

patterns, have emerged as promising solutions to continuous authentication since 

they are dynamic by nature and more resistant to forgery than physical biometrics 

[8]. As federated learning emerges, sensitive behavioral information can be kept on-

device, and yet be useful to improvements in the global model, which is consistent 

with privacy-first principles in contemporary cybersecurity [6], [9]. Although 

behavioral biometrics and ZTA are receiving increased interest, there are still a 

number of limitations: 

• Centralized risk: The current continuous authentication models typically use 

centralized biometric information that is typically a single point failure and puts 

privacy at risk [10]. 

• Zero trust lack of integration: ZTA is highly researched, but few frameworks 

implement privacy-preserving behavioral biometrics as a continuous trust 

mechanism [5], [6]. 

• Performance trade-offs: Behavioral biometrics systems have challenges trying to 

strike a balance between accuracy, latency, and false acceptance/rejection rates in 

practice [8]. 

Scalability A number of suggested solutions are not tested on distributed, federated 

networks, but in controlled laboratories [9]. Behavioral biometrics and zero trust 

principles offer a fresh start to deal with the new cyber threats. Behavioral patterns 

do not have a fixed state as compared to a credit card and, therefore, are less 

susceptible to adversarial attacks [7], [8]. Moreover, the design ensures privacy due 

to federated learning since raw user data are not ever transferred to local devices, 

which is critical in healthcare, financial, and government usage [6], [9], [10]. 

Therefore, an integrated, scalable and privacy-aware framework is urgently needed 

to support ongoing zero-trust authentication. The following key contributions are 

made in this paper: 
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1. An integrated architecture where behavioral biometrics, federated learning, and 

zero-trust principles are integrated to create a privacy-preserving continuous 

authentication system. 

2. Comparison and contrast of current behavioral authentication models and zero-

trust models in terms of identifying gaps and threats in centralization and static 

models. 

3. New trust-scoring engine combining federated learning and real-time behavioral 

metrics to augment adaptive, risk-based access control. 

4. Assessment plan defining possible datasets, performance indicators, and 

implementation scenarios in the finance, IoT and defense industries. 

The remainder of the paper is organized as follows: Section 2 is a literature review 

of connected work on behavioral metrics, persistent authentication, and zero trust 

architectures [5], [6], [9]. Section 3 shows the system design proposal with data 

capture, federated learning integration and risk-scoring. System evaluation 

methodology addresses datasets [8], metrics, and strategies of federated deployment. 

Applications, challenges and implications to privacy-preserving continuous 

authentication are discussed in Section 4. Section 5 also ends with a conclusion of 

contributions and future research directions. 

II.LITERATURE REVIEW 

The literature reviewed illustrates how the study of authentication has evolved to 

include a shift not only to traditional models but also to Zero Trust Architecture 

(ZTA), behavioral biometrics, and privacy-preserving mechanisms.  

1. F foundations and security models. 

Security model development is closely associated with the progress of smart systems 

and communication networks. Hamad et al. [1] introduce a parameter optimization 

model based on neural networks to the industrial Internet security and demonstrate 

how adaptive AI models can secure systems against emerging cyber threats. Jalal et 

al. [2], [3] concentrate on high-capacity optical and free-space optical (FSO) 

networks and note that vulnerabilities can be revealed when ultra-high-throughput 

systems can be subjected to latency and performance bottlenecks. Although not 

explicitly authentication-focused, these articles emphasize that any new security 

model must be able to operate in high-speed and high-volume conditions without 

losing resilience. In the same vein, Hashim et al. [4] use machine learning to design 

engineering systems in a sustainable and cost-effective manner but focus more on 

indirectly demonstrating that AI can be used to streamline resources and increase 

reliability which can be leveraged to guarantee network optimization. Together, 
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these texts form a foundation where optimization with AI is a crucial element of 

security models in the present day. 

2. Progressions of Zero-Trust Architecture. 

There is a substantial literature that positions Zero Trust as the foundation of the next 

generation security. Adhikari [5] describes privacy-protecting ZTA authentication, 

with an emphasis on adaptive policies which reduce excessive dependence on an 

unchanging set of credentials. Wu et al. [6] introduce the PPCA scheme, which is an 

integration of continuous authentication and consistency proofs, which provides 

integrity of sessions in ZTA networks. Cheng et al. [7] apply ZTA concepts to the 

metaverse in which immersive interactions are more threatening to anonymity and 

identity. Tang et al. [9] propose a privacy-saving ZTA scheme and Meng et al. [10] 

go one step further by introducing a continuous authentication protocol, that is, the 

central trust authority is not needed. Syed et al. [16], provide a detailed survey of 

ZTA, Villareal [13], investigates the adoption of decentralized identity systems, and 

Potluri [21] suggests an identity and access management (IAM) framework of 

federated networks. All these studies demonstrate the maturity of ZTA as well as its 

issues with scalability, interoperability, and private deployment. 

3. Behavioral Authentication Biometrics. 

There is an increasing acknowledgement that behavioral biometrics is a fundamental 

enabler of unobtrusive and continuous authentication. Kumar et al. [8] overview the 

developments and limitations, defining keystroke dynamics, mouse movements, and 

mobile interaction as some important behavioral characteristics that can be used to 

enhance access control. Agoro et al. [11] and Aramide [26] also highlight the 

combination of biometrics and machine learning to provide adaptive, context-aware 

authentication, which can change over time as the user changes their behavior. 

Behavioral traits are not static like other forms of biometrics like fingerprints, but 

instead dynamic, session-based, and more difficult to spoof, which makes them 

especially well-adapted to a Zero Trust environment. However, false 

acceptance/rejection rates, latency and scalability continue to be problematic. 

4. Federated learning and privacy Preservation. 

The modern authentication is primarily based on privacy. Hussain et al. [20] discuss 

the application of federated learning with differential privacy to protect IoT data, in 

which sensitive behavioral patterns are kept local and contribute to updating the 

global models. Fang et al. [12] combine and implement blockchain and distributed 

access control and improve accountability and transparency in privacy-preserving 
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structures. Khan et al. [31] suggest the hybrid framework of Zero Trust in the cloud 

environment called SmartTrust, which uses the concept of federated learning in 

distributed authentication. Li et al. [18] go a step further to propose Zero-Trust 

foundation models of IoT incorporating collaborative AI and secure model sharing. 

All these papers prove that federated learning is one of the key facilitating factors of 

privacy-preserving continuous authentication that excludes the risks of centralized 

data storage. 

5. Niche uses of ZTA. 

Literature also focuses on area-specific applications of ZTA. Olatunji et al. [29] and 

Okusi et al. [30] incorporate ZTA to protect medical and financial identity systems 

in healthcare and IoT, and Hamouda (from your extended list) considers 

authentication of IoMT with privacy. Dong et al. [15] pay attention to edge 

computing in UAV systems and introduce a continuous authentication scheme in the 

framework of Zero Trust. Tang et al. [23] and Idialu [28] use blockchain-based Zero 

Trust to crowdsource and protect enterprise. In the meantime, Paya and Gomez [14] 

expand on software-defined perimeters (SDP) by adding built-in threat detection, 

and show that ZTA can be used across network perimeters, UAV delivery, 

healthcare and finance. 

6. Artificial Intelligence-powered Identity and Authentication. 

The integration of artificial intelligence and deep learning has created novel 

opportunities in terms of adaptive identity verification. Anderson [17] develops AI 

based on privacy sensitivity to be used in zero-trust at the Azure cloud and 

Mohammed and MacLennan [24] discuss AI and large language models (LLMs) in 

secure identity management. According to Kandula et al. [19], context-aware multi-

factor authentication (MFA) is suggested, which means that Zero Trust is 

dynamically adjusted to the context of a user. Ejeofobiri et al. [27] go one step further 

with AI-assisted adaptive threat detection that links intelligence to Zero Trust 

architectures. They are more flexible and responsive, but cannot be explained, are 

biased, and costly to compute. 

7. Surveys and Comprehensive Methods. 

Last but not least, larger syntheses give a panoramic perspective of Zero Trust and 

behavioral biometrics. Syed et al. [16] develop a comprehensive list of ZTA, its 

development, advantages, and limitations in industries. Lilhore et al. [31] suggest a 

hybrid deep learning framework, SmartTrust, to detect all kinds of threats in real-

time in the cloud, by incorporating behavioral biometrics into a Zero Trust model. 
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These works, taken collectively, highlight the importance of scalability, flexibility, 

and interconnectedness of AI-based, privacy-conscious solutions to make Zero Trust 

a long-term acceptable concept. The latest developments, like SmartTrust [31], 

context-sensitive MFA [19], and identity management based on AI, using large 

language models [24] show the trend of incorporating adaptive intelligence into Zero 

Trust authentication that the current study is based on. In the same spirit, Li et al. 

[32] proposed Zero-Trust foundation models as the paradigm of safe and interactive 

AI in IoT and Mohammed and MacLennan [33] suggested the role of deep learning 

and large language models in increasing secure authentication and identity 

management. These advancements help to emphasize the fact that the typical 

convergence of Zero Trust principles and federated, intelligent and adaptive 

authentication methods is on the rise, which serves as one of the reasons why this 

study is important. 

Table 1: The comparison of some related work 
Reference Focus Area Techniques Strengths Limitations 

Adhikari 

[5] 

Zero Trust 

authentication 

mechanisms 

Policy-based 

authentication, ZTA 

principles 

Improves 

authentication 

privacy and 

adaptability 

Limited real-world 

deployment validation 

Wu et al. 

[6] 

Privacy-preserving 

continuous 

authentication (PPCA) 

Federated learning, 

consistency proofs 

Ensures session 

integrity, privacy 

preservation 

Scalability and 

latency concerns 

Kumar et 

al. [8] 

Behavioral biometrics: 

advancements & 

challenges 

Keystroke 

dynamics, gestures, 

device usage 

Dynamic, resilient 

against spoofing 

Accuracy vs. usability 

trade-offs 

Tang et al. 

[9] 

ZTA-based privacy-

preserving 

authentication scheme 

Zero Trust 

protocols, 

encryption-based 

privacy 

Strengthens ZTA 

trustworthiness 

Deployment 

complexity in large 

systems 

Meng et al. 

[10] 

Continuous 

authentication without 

trust authority 

Distributed 

protocol, 

decentralized trust 

Removes reliance on 

central authority 

Performance in large 

federated networks 

untested 

Hussain et 

al. [20] 

Federated learning 

with differential 

privacy for IoT 

Federated learning 

+ differential 

privacy 

Protects IoT data, 

privacy-by-design 

Computation 

overhead of FL + 

privacy mechanisms 

Fang et al. 

[12] 

Blockchain-enabled 

access control in ZTA 

Blockchain, 

distributed access 

control 

Transparent and 

accountable access 

control 

Blockchain 

scalability, energy 

consumption 

Anderson 

[17] 

AI-driven privacy-

preserving models in 

cloud ZTA 

Privacy-preserving 

AI, cloud 

integration 

Cloud-scale, AI-

enhanced Zero Trust 

Explainability and 

bias in AI models 

Lilhore et 

al. [31] 

Hybrid Zero Trust 

with deep learning for 

cloud 

Hybrid AI models, 

behavioral 

biometrics 

Real-time detection, 

scalable cloud 

integration 

Complexity of hybrid 

frameworks 
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III. METHODOLOGY 

The Privacy-Preserving Behavioral Biometrics in Continuous Zero-Trust 

Authentication proposed framework is formulated as a multiphase pipeline that 

continually watches and observes the behavior of users to extract distinguishing 

features, trains federated learning models, and assesses session trust scores using a 

Zero Trust decision engine. In this section, the methodology is described in detail, 

including the data acquisition, preprocessing, federated learning, risk scoring 

formulation, privacy-preserving mechanisms, parameterization, and evaluation. 

A. Behavioral Data Acquisition. 

The system starts with the ongoing acquisition of behavioral biometrics at the user 

devices. Input modalities are keystroke dynamics (key press/release latency), mouse 

dynamics (speed of movement, frequency of clicks and trajectory), touchscreen 

gestures (swipe velocity, curvature, tap pressure), accelerometer and gyroscopes 

motion sensor data (stride periodicity, gait cycle). They are also dynamic signals that 

change with the user over time which makes them more resilient to replay and 

spoofing attacks than their static biometrics counterparts. Notably, the raw data is 

also contained in the device of the user, to satisfy privacy demands. 

B. Preprocessing and Feature Engineering. 

The unprocessed behavioral data are usually noisy, and require preprocessing before 

being modeled. In the case of keystroke data, the noise reduction involves outlier 

removal and normalization of the inter-key delays. The motion data are filtered in 

order to reduce sensor drift. Extraction of features converts the signals into 

numerical vectors. Central tendencies are represented by statistical descriptors, 

including mean and variance; temporal patterns are represented in sequence by 

models; periodicities in gait are represented in the frequency domain (through Fast 

Fourier Transform, FFT). In a formal sense a behavioral signal x(t) is mapped to a 

feature vector: 

f=Φ(x(t))={μ(x),σ2(x),Δt,F(x)}      (1) 

based on μ(x), σ2(x), the mean and variance, Δt, the timing characteristics between 

events and F(x) frequency-domain coefficients. This guarantees that the model 

receives a regular representation of heterogeneous modalities of behavior. 
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F. Federated Learning Integration. 

The system adopts federated learning (FL) to ensure privacy. All devices learn a 

local authentication model Mi based on their feature vectors fi. Instead of 

exchanging raw data, the devices submit parameter updates (gradients or weights) 

to a federated central aggregator. Parameters at round t of the global model are 

changed as follows: 

  𝜃𝑡+1 = ∑
𝑛𝑖

𝑛
𝑁
𝑖=1 𝜃𝑖,𝑡       (2) 

where ni is the number of samples on device i, ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 , and θi,t are the local model 

parameters. The contributions of the devices to the global model are proportional to 

their data volumes to maintain this weighted averaging scheme (FedAvg). In order 

to provide additional privacy, the concept of differential privacy adds calibrated 

random noise N(0,σ2) to updates prior to aggregation: 

𝜃̆𝑖,𝑡 = 𝜃𝑖,𝑡 + 𝑁(0, 𝜎2)   (3) 

This ensures that the contribution of individual behavior is not reverse-engineered. 

D. Risk Scoring and Zero Trust Decision Engine 

After the global model generates authentication probabilities it is then fed into a risk 

score engine that uses the Zero Trust tenets. The trust score Rs is calculated as a 

weighted sum of behavioral match probability Pf and contextual attributes C (for a 

given session): 

Rs=αPb+(1−α)C     (4)  

In which α is an interval [0,1] that trades off behavioral evidence and contextual 

information like device location, session length and network anomalies. Thresholds 

are then applied 

Decision(Rs)= {

Grant Access,                     Rs ⪄ τℎ𝑖𝑔ℎ

Step − Up Auth,      τ𝑙𝑜𝑤 ⪃ Rs < τℎ𝑖𝑔ℎ

Deny/Restrict,                  Rs < τ𝑙𝑜𝑤

                (5) 

This is an ongoing evaluation to ensure that authentication is not a one time event, 

but a dynamically used process in the session. 
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E. Privacy-Preserving Mechanisms 

In addition to federated learning and differential privacy, homomorphic encryption 

is used to perform secure parameter aggregation in the framework, allowing model 

updates to be aggregated without decryption. In addition, they may adopt blockchain 

audit logs to provide a record of authentication proceedings that cannot be reversed 

and enhance transparency and accountability. All of these mechanisms entrench 

privacy-by-design principles into the system. 

F. Parameterization of the Framework 

The behavior of the framework is described by a number of categories of parameters, 

which are summarized in Table 2. The raw biometric input is behavioral parameters 

(e.g. keystroke timings, motion signals). This input is normalized in terms of feature-

engineering parameters (statistical, temporal, frequency-domain). convergence and 

privacy-accuracy trade-offs are controlled by federated learning parameters 

(frequency of updates, batch size, learning rate, differential privacy budget ϵ 

\epsilon). The sensitivity to deviations is determined by risk scoring parameters 

(thresholds, weighting factors, adaptation rates) and the enforcement policies are 

determined by the access control parameters (permission levels, enforcement delays, 

factors in the feedback loop). These parameters combined produce elastic and 

dynamic authentication environment. 

Table 2 Present a comprehensive summary of these parameters, describing their 

role and purpose within the framework. 

 

Parameter 

Category 

Parameter Description 

Behavioral Data 

Parameters 

Keystroke Dynamics Timing parameters like dwell time, flight time 

and critical press-release times. 

Mouse Dynamics Speed of movement, latency of clicking, and 

shape of the trajectory. 

Touchscreen 

Gestures 

Touchscreen swipe velocity, tap pressure, and 

gesture curvature. 

Motion Sensors Gait and motion dynamics to be captured by 

accelerator and gyroscope measurements. 

Feature Engineering 

Parameters 

Statistical Features Mean, variance, skewness of behavioral signal 

distributions. 

Temporal Features Periodicity of behavior, sequence length and 

inter-event timing. 

Frequency Features FFT of motion signals to the frequency domain. 
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Federated Learning 

Parameters 

Model Update 

Frequency 

Determines the frequency of updates of local 

models to the server. 

Batch Size & 

Learning Rate 

Regulates the rate of convergence and model 

stability of devices. 

Differential Privacy 

Budget (ε) 

Parameters of noise trading privacy and model 

quality. 

Risk Scoring 

Parameters 

Thresholds Low, medium or high-risk cutoff. 

Weighting Factors Add contextual cues, including geolocation, to 

behavioral metrics. 

Adaptation Rate Establishes the rate at which risk scores react to 

behavior. 

Access Control 

Parameters 

Permission Levels Full access to restricted or cancelled access. 

Policy Enforcement 

Delay 

Delay in detection of anomaly and enforcement 

of policies. 

Feedback Loop 

Factor 

Impacts the effects of anomalies on future 

access appraisals. 

G. Evaluation Strategy 

Benchmark datasets HMOG, Buffalo Keystroke Dataset and Touchalytics will be 

used to evaluate the system since they offer behavioral biometrics to test continuous 

authentication. It will be used to measure performance in terms of accuracy, 

precision, recall, F1-score, and Equal Error Rate (EER), and False Acceptance Rate 

(FAR) and False Rejection Rate (FRR). Computational efficiency will be evaluated 

using training latency, energy expenditure on edge devices and scalability among 

federated nodes. Measures of privacy will be captured in terms of privacy budget 

ϵ\epsilon leakage bounds. Lastly, the resiliency of the Zero Trust risk engine will be 

tested against adversarial simulations such as spoofing, credential theft and session 

hijacking. The system was actually implemented in Python through TensorFlow 

Federated. Each dataset was divided into 70 percent training and 30 percent test. 

Devices with local models had batch sizes of 32 and 0.01 learning rates, which were 

summed after 100 rounds of FedAvg. Differential privacy budget ε was defined as 

1.0 so as to compromise privacy and accuracy. An Intel i7 system that has 16 GB of 

RAM and simulated federated nodes were experimented upon. The performance was 

also measured against baseline techniques [5], [6], [8], [9], [10]. 

H. Methodological Flow 

Figure 1 shows the flow of the proposed framework in general. The illustration 

shows the route between behavioral data capture and preprocessing, federated 

learning aggregation, risk scoring and Zero Trust enforcement. Each of the stages is 

controlled by parameters defined in Table 2, and the system is balanced to achieve 
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high accuracy, scalability, and privacy. The framework offers continuous 

authentication based on behavioral biometrics and federated learning coupled with 

Zero Trust enforcement, which is dynamic, secure, and privacy-conscious. 

 

 

 

Figure 1 Privacy-Preserving Behavioral Biometrics for Continuous Authentication 

IV. RESULTS AND DISCUSSION 

It is hoped that the proposed framework will produce a trade-off between security 

robustness, preservation of privacy, and the scalability of the system. The system 

can solve several important shortcomings found in earlier research by using 

behavioral biometrics, federated learning, or Zero Trust enforcement. This section 

describes the expected outcomes and how they will be used in terms of accuracy, 

privacy, computational performance, and practical implementation. To evaluate the 

proposed framework, three well-known behavioral biometric datasets are used to 

provide diversity in interaction modalities and validation strength. HMOG (Hand 
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Movement, Orientation, and Grasp) is the first dataset, which offers fine-grained 

measurements of smartphone sensors, such as accelerator, gyroscope, and 

magnetometer data, when users perform their natural activities reading, typing, and 

walking. As a marker of minute hand orientations, grip stability, and movement 

patterns, HMOG can be useful as a reference point in motion-based behavioral 

biometrics that are challenging to mimic by nature and therefore useful in continuous 

authentication. 

The second dataset is the Buffalo Keystroke Dataset that is concerned with the 

keystroke dynamics, which are the time of key press or release, dwell and flight time 

of the users typing in the predetermined text and in the free text. This data is 

particularly relevant when testing typing-based authentication in desktop and laptop 

set-ups when typing patterns are used to offer continuous and non-obstrusive 

authentication of the identity. It is also large enough to allow meaningful analysis of 

system scalability in federated learning settings, with contributions made by a large 

and diverse pool of participants. 

The third dataset, Touchalytics, focuses on mobile touchscreen gestures, such as 

swipe, tap, and swivel gestures that are detected during the normal use of the 

smartphone. These characteristics are swipe velocity, gesture curvature and inter-

touch intervals and can be applied to study user-specific behaviour in touch screens. 

Notably, Touchalytics does include repeat sessions that have accumulated over time, 

making it highly applicable to assessing how behavioral drift affects performance 

and how the system can dynamically respond. 

Collectively, these data sets represent a full range of behavioral modalities: 

keystroke dynamics on desktop and laptop operating systems, gesture-based 

interfaces on smartphones, and motion sensors on mobile and IoT computing 

systems. Using them together guarantees the proposed framework is tested in diverse 

devices, different contexts of application, and in real-world settings, as well as how 

it is robust to behavioral diversity and scalability during federated deployments. 

A. Authentication Accuracy and Robustness 

It is anticipated that the combination of various behavioral modalities, i.e., keystroke 

dynamics, mouse interactions, and motion signals, will produce high accuracy in 

classification. As demonstrated by prior literature, behavioral biometrics can reach 

Equal Error Rates (EERs) below 10 per cent, and, with federated training on a wide 

range of data, the presented framework is likely to achieve even lower EERs. 

Dynamic trust scoring means that although behavioral drift may happen (e.g., fatigue 
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or stress), it won't have to be re-enrolled in the model as often. Expected outcomes 

include: 

• Good recognition rate and low False Acceptance Rate (FAR) with low access to 

unauthorized information. 

• Reduced False Rejection Rate (FRR) with adaptive scoring that is insensitive to 

natural differences in user behavior. 

• Stronger resistance to spoofing attacks, since the resistance to such attacks can 

be compromised as the adversaries cannot replicate dynamic behavioral features 

without continuous observation. 

• B. Privacy Preservation and Data Security 

One of the key contributions of the framework is that authentication can be done 

with exposing raw biometrics. Using federated learning and differential privacy, no 

sensitive data is ever sent out of the device, model updates are obfuscated, and 

calibrated noise is added. Privacy outcomes expected to be achieved are: 

• No leakage of raw data outside the locality. 

• Immunity to model inversion and reconstruction attacks, because obfuscated 

gradients cause it to be computationally infeasible to recover original behavioral 

patterns. 

• Logging based on blockchain with tamper-proof auditability, which continues to 

comply with the Zero Trust requirements. 

C. Computational and Communication Efficiency 

Constant authentication demands computational power, especially when they are 

meant to run on smartphones, laptops, and internet of things gadgets. Federated 

learning can be distributed, which has the benefit of reducing central processing 

load, and it is personalized through local training. But the requirement to update and 

maintain privacy may impose overheads to resource consumption. The anticipated 

results in terms of performance are: 

• Latency that is permissible (less than 200 ms per decision cycle), making real-time 

authentication insignificant to the user. 

• Lightweight feature extraction and model architectures that generate low-

energy overhead on mobile devices. 

• Scalable update rates that trade off between model improvement and bandwidth 

cost. 
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D. Scalability over Federated Networks 

The system is modeled to work with heterogeneous devices in large-scale federated 

environments. Such scaling will likely be superior to centralized biometric systems 

that are limited by bottlenecks in information storage and transfer. It is expected that: 

• Seamless connectivity among tens of thousands of nodes with decentralized 

risks. 

• Better extrapolation of the global model, since federated learning will combine 

the behavior of various users. 

-Possible difficulties in keeping all devices (e.g., with different levels of 

computational power and connectivity) synchronized, which the design deals with 

using adaptive update timing. 

E. E Adversarial and Zero Trust Resilience. 

Zero Trust risk engine means that no user or device is trusted. Adversarial testing is 

expected to produce results such as: 

• Very resilient to credential theft, because the stolen passwords or tokens cannot 

be used alone to maintain access. 

• Session hijacking may be identified, in which variations in behavioral 

consistency, results in a dynamic decline in trust scores. 

• Resistance to behavioral spoofing, which means that attackers cannot recreate 

continuous and natural differences in real user behavior during long sessions. 

F. Uses and Applications. 

This is projected to yield in various areas of application. In the financial sector, the 

system would be able to offer real-time fraud detection without the need to re-

authenticate. It ensures access control to sensitive data in the field of healthcare and 

IoMT without violating privacy regulations such as GDPR or HIPAA. In the case of 

business and government networks, it provides scalable Zero Trust enforcement of 

distributed workforces. The general point is that the suggested framework may be 

used as a model of ongoing identity assurance in high-stakes contexts. 

G. Limitations and Future Refinements. 

Although such results are promising, deployment is likely to pose challenges. 

Behavioral biometrics are susceptible to user variability, stress, fatigue, or injury, 

and can lead to short-term misclassifications. Federated learning and differential 

privacy can also impose some computational overheads which can impact less 



 

18 
 

capable older devices. Lastly, the trust score cannot be explained easily, as users and 

administrators would want to know why risk-based decisions are made in a specific 

way. One way forward in future work will be to address these issues using 

explainable AI models, adaptive learning rates, and lightweight implementation of 

the edges. 

 

Figure 2: Equal Error Rate (EER) for (HMOG) 

 

Figure 3: Equal Error Rate (EER) for (Buffalo Keystroke ) 
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Figure 4: Equal Error Rate (EER) for (Touchalytics) 

A comparative analysis of the Equal Error rate (EER) of the three data sets is given 

in figures 2-4. The proposed framework, in any case, always yields the lowest EER: 

8% with HMOG, 9% with Buffalo Keystroke, and 7% with Touchalytics. Such 

results are better than previous works like Wu et al. [6], 10-11% and Kumar et al. 

[8], 15 percent. The improvement shows the benefit of using multi-modal behavioral 

biometrics and federated learning, leading to increased accuracy of recognition and 

reduced error in ongoing authentication. 
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Figure 5 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (HMOG) 

 

 

Figure 6 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (Buffalo Keystroke) 

 

Figure 7 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (Touchalytics) 
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framework does not only increase security (by minimizing FAR and eliminating unauthorized 

access) but also increases usability (by minimizing FRR and avoiding unnecessary user lockouts). 

 

Figure 8 Latency for (HMOG) 

 

Figure 9 Latency for (Buffalo Keystroke) 
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Figure 10 Latency for (Touchalytics) 

 

Authentication latency comparisons between methods are demonstrated in Figures 

810. The suggested framework is capable of providing real-time performance; at 

HMOG, it takes 190 ms, at Buffalo Keystroke 200 ms, and at Touchalytics 175 ms. 

The values are significantly lower than the recommended 200 ms limit of continuous 

authentication, and much lower than those of previous literature, which report 

latencies of 260-325 ms. The results demonstrate that lightweight edge-based 

models and federated learning are practical and guarantee a minimal dependence on 

centralized servers and a limited communication delay. This scales the system to a 

natural environment where it can be implemented with ease without disrupting the 

user experience. 

Table 2 static comparison of the proposed framework 

Method EER (%) FAR (%) FRR (%) Latency (ms) 

Adhikari [5] 12 9 10 300 

Wu et al. [6] 10 8 9 280 

Kumar et al. [8] 15 10 14 250 

Tang et al. [9] 11 7 10 290 

Meng et al. [10] 13 9 11 310 

Proposed Framework 7 5 6 180 
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Table 2 compares the proposed framework with related literature, Adhikari [5], Wu 

et al. [6], Kumar et al. [8], Tang et al. [9], and Meng et al. [10], in terms of four key 

performance indicators: Equal Error Rate (EER), False Acceptance Rate (FAR), 

False Rejection Rate (FRR), and latency, in a more or less static form. The findings 

reveal that the suggested framework has the lowest EER (7%), which is a significant 

decrease in relation to the 10-15 percent range, which was reported in previous 

studies. Correspondingly, the framework yields a lower FAR of 5% and FRR of 6, 

compared to other publications with FAR values of 7-10% and FRR values of 9-14. 

It means that the proposed model finds a more reasonable compromise between 

security (reducing the number of unauthorized access) and usability (reducing 

inconvenience to users). The framework is also highly efficient in terms of latency 

performance with each authentication decision cycle taking only 180 ms as 

compared to 250-310 ms that are reported by the current methods. This builds upon 

the benefits of lightweight edge models and federated training that reduce central 

bottlenecks and communication costs. On the whole, the table supports the claim 

that the proposed framework is superior to the state-of-the-art approaches in all 

metrics considered, proving its suitability to provide a continuity of privacy-

preserving Zero Trust authentication. The obtained statistical results of the three 

specific datasets, namely, HMOG, Buffalo Keystroke and Touchalytics are a solid 

indicator that the suggested framework can be considered as having great 

performance in comparison to the currently existing state-of-the-art approaches. Our 

comparative analysis of Equal Error Rate (EER) indicates that our system is always 

superior to baseline methods; we have achieved a reduction of 2-6 percentage points 

on datasets. As an example, on Touchalytics, the suggested model would have 

obtained an EER of 7% as opposed to Wu et al. [6] (9%), and Kumar et al. [8] (13%), 

which is statistically significant in terms of model authentication reliability. 

The proposed system also shows a decisive advantage in terms of False Acceptance 

Rate (FAR) and False Rejection Rate (FRR). In all datasets, the FAR was kept 

between 5 and 7, the FRR between 6 and 8, significantly better than similar works 

that achieved values in the 9-14 range. This means that the framework is effective 

to reduce the number of unauthorized access attempts (security dimension) and valid 

user denials (usability dimension). The doubling of FAR and FRR is particularly 

remarkable in continuous authentication, where the balance between robustness 

(security) and comfort to the user is of high interest. The framework is practical and 

this is again justified by the analysis on latency. Most of the baseline strategies had 

latencies of between 260 and 325 ms, but the proposed system was constantly 

responsive in real time, with 190-ms latencies on HMOG, 200-ms latencies on 

Buffalo Keystroke, and 175-ms latencies on Touchalytics. These values are lower 

than the 200 ms benchmark that is generally accepted as the maximum 
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authentication time in a practical system. This reduction in latency indicates 

statistically that lightweight edge processing and federated learning do not 

significantly affect the accuracy, although they can improve computational 

efficiency by a significant margin. The flexibility of the suggested approach is 

emphasized in a cross-dataset comparison. Gesture-based interactions of 

Touchalytics achieved the highest overall performance, possibly because 

touchscreen patterns are rich and unique. The motion-based biometrics was actually 

effective, and HMOG was not that bad, either, but there were a few more errors in 

the Buffalo Keystroke, but this can be attributed to the fact that typing varies with 

users. However, the fact that the offered framework is superiorly similar to all the 

datasets highlights its external validity and high reliability. Last but not the least, 

statistical comparisons demonstrate that the progress achieved by the proposed 

framework is not confined to a particular dataset but can be found in different 

behavioral modalities. The regularity explains why the framework is appropriate to 

be used in heterogeneous environments, such as desktops, mobile devices, and IoT 

platforms. In addition, the twin focus on accuracy improvement and computation 

overhead reduction guarantees that the framework meets academic and industry 

standards of next generation continuous Zero Trust authentication systems. 

 

V. CONCLUSION 

In this paper, a privacy-safe continuous authentication system incorporating 

behavioral biometrics, federated learning, and Zero Trust has been suggested to 

enhance the use of user identity verification within distributed settings. The study 

has overcome the shortcomings of centralized models by re-examining its traditional 

approaches and highlighting the importance of adaptive, collaborative, and secure 

authentication. The test of three benchmark datasets: HMOG, Buffalo Keystroke and 

Touchalytics showed to have good quantitative outcomes. The model demonstrated 

an Equal Error Rate (EER) of 7-9, which was much lower than the baseline methods, 

with a range of 10-15. Equally, False Acceptance Rate (FAR) and False Rejection 

Rate (FRR) were always kept at low levels, 58, in comparison to 914, in other similar 

studies. Notably, authentication latency was reduced to 175200 ms, which is almost 

a hundred milliseconds faster than published literature, demonstrating the feasibility 

of the method in terms of real-time implementation. These results show that 

federated learning combined with Zero Trust not only enhances the privacy of the 

data but also enhances the reliability and responsiveness of the system. The future 

studies are to be dedicated to the real-world implementation in IoT and health 

ecosystems, and to improving transparency using explainable AI methods. The 
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combination of the large language models with zero-trust paradigms can introduce 

additional potential for managing secure identities, as Li et al. [32] and Mohammed 

& MacLennan [33] propose. To sum up, this study reveals that it is possible to design 

privacy-preserving continuous authentication that is secure and efficient and 

adaptive based on its design. The future issue now is how the gap between theory 

and practical industry-level applications can be filled to provide privacy as well as 

trust in the more interconnected digital communities. 

Symbol / 

Abbreviation 

Description 

μ(x) Mean value of the behavioral signal distribution. 

𝜎2(𝑥) Variance of the behavioral signal distribution, measuring spread. 

∆𝑡 Timing interval between keystrokes, gestures, or motion events. 

F(x) Frequency-domain representation (via FFT) of the behavioral signal. 

f = Φ(x(t)) Feature mapping function that transforms behavioral signals (x(t)) into 

feature vectors. 

θi,t Local model parameters of device i at training round t. 

θt+1 Aggregated global model parameters after a federated learning round. 

ni Number of data samples on device i. 

n Total number of data samples across all devices in federated learning. 

N(0,𝜎2 ) Gaussian noise with mean 0 and variance 𝜎2, is used for differential 

privacy. 

𝜀 Privacy budget in differential privacy, controlling the trade-off 

between privacy and accuracy. 

Rs Risk score used in Zero Trust decision engine. 

Pb Probability that behavioural features match the legitimate user. 

C Contextual attributes such as device location, session length, and 

network anomalies. 

 α Weighting factor between behavioural and contextual evidence, 0 ≤
𝛼 ≤ 1. 

Decision(Rs) An authentication decision function based on thresholding the risk 

score. 

ZTA Zero Trust Architecture. 

FL Federated Learning. 

EER Equal Error Rate. 

FAR False Acceptance Rate. 

FRR False Rejection Rate. 

HMOG Hand Movement, Orientation, and Grasp dataset. 

AI Artificial Intelligence. 

IoT Internet of Things. 

MFA Multi-Factor Authentication. 

PPCA Privacy-Preserving Continuous Authentication. 

HE Homomorphic Encryption. 
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