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Abstract

The more critical infrastructures, financial services and IoT systems are using digital
ecosystems, the more people have wanted to have continuous authentication
processes that are sensitive to privacy. Conventional methods like fixed passwords
and one time biometrics are becoming susceptible to a spoofing attack, credential
theft, and session hijacking. To handle those issues, this paper promotes a single
framework that combines behavioral biometrics, federated learning, as well as Zero
Trust as the foundations of continuous authentication. This is because behavioral
modalities like keystroke dynamics, mouse movements, gestures and motion signals
give dynamic identity traits that are difficult to forge. Federated learning guarantees
privacy protection because raw biometric data are only stored on user devices and
that global model refinement is achieved using safe parameter aggregation. The
system uses trust-scoring engine to dynamically scale access privileges in relation
to live indicators of conduct and context-sensitive risk indicators. Comparison with
benchmark datasets: HMOG, Buffalo Keystroke, and Touchalytics shows that the
proposed framework is more accurate, with an Equal Error Rate (EER) of only 7
percent, lower False Acceptance and Rejection Rates, and real-time latency of less
than 200 ms. A comparative study proves that both security and usability have
become much more advanced than state of the art. The work can provide a scalable,
versatile, and privacy-respecting next-generation continuous authentication
solution, with potential practical use in finance, healthcare, and internet of things
domains as well as defense.

Keywords: Behavioral Biometrics, Federated Learning, Zero Trust Architecture
(ZTA), Continuous Authentication, Privacy-Preserving Security.
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LINTRODUCTION

The accelerated digital transformation has amplified the need to deploy secure
scalable and privacy-aware authentication systems across vital infrastructure,
financial services, and developing 5G/IoT ecosystems. Conventional authentication,
e.g. one-time biometrics or simple passwords, is becoming more prone to spoofing,
session hijacking and credential theft [1], [2], [3],[4]. Recent breakthroughs in zero-
trust architecture (ZTA) recommend the ongoing verification of identity and access
at each tier, so no actor is trusted as such [5], [7]. Parallel to that, behavioral
biometrics, including keystroke dynamics, mouse interactions, and mobile motion
patterns, have emerged as promising solutions to continuous authentication since
they are dynamic by nature and more resistant to forgery than physical biometrics
[8]. As federated learning emerges, sensitive behavioral information can be kept on-
device, and yet be useful to improvements in the global model, which is consistent
with privacy-first principles in contemporary cybersecurity [6], [9]. Although
behavioral biometrics and ZTA are receiving increased interest, there are still a
number of limitations:

* Centralized risk: The current continuous authentication models typically use
centralized biometric information that is typically a single point failure and puts
privacy at risk [10].

* Zero trust lack of integration: ZTA is highly researched, but few frameworks
implement privacy-preserving behavioral biometrics as a continuous trust
mechanism [5], [6].

» Performance trade-offs: Behavioral biometrics systems have challenges trying to
strike a balance between accuracy, latency, and false acceptance/rejection rates in
practice [8].

Scalability A number of suggested solutions are not tested on distributed, federated
networks, but in controlled laboratories [9]. Behavioral biometrics and zero trust
principles offer a fresh start to deal with the new cyber threats. Behavioral patterns
do not have a fixed state as compared to a credit card and, therefore, are less
susceptible to adversarial attacks [7], [8]. Moreover, the design ensures privacy due
to federated learning since raw user data are not ever transferred to local devices,
which is critical in healthcare, financial, and government usage [6], [9], [10].
Therefore, an integrated, scalable and privacy-aware framework is urgently needed
to support ongoing zero-trust authentication. The following key contributions are
made in this paper:
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1. An integrated architecture where behavioral biometrics, federated learning, and
zero-trust principles are integrated to create a privacy-preserving continuous
authentication system.

2. Comparison and contrast of current behavioral authentication models and zero-
trust models in terms of identifying gaps and threats in centralization and static
models.

3. New trust-scoring engine combining federated learning and real-time behavioral
metrics to augment adaptive, risk-based access control.

4. Assessment plan defining possible datasets, performance indicators, and
implementation scenarios in the finance, loT and defense industries.

The remainder of the paper is organized as follows: Section 2 is a literature review
of connected work on behavioral metrics, persistent authentication, and zero trust
architectures [5], [6], [9]. Section 3 shows the system design proposal with data
capture, federated learning integration and risk-scoring. System evaluation
methodology addresses datasets [8], metrics, and strategies of federated deployment.
Applications, challenges and implications to privacy-preserving continuous
authentication are discussed in Section 4. Section 5 also ends with a conclusion of
contributions and future research directions.

ILLITERATURE REVIEW

The literature reviewed illustrates how the study of authentication has evolved to
include a shift not only to traditional models but also to Zero Trust Architecture
(ZTA), behavioral biometrics, and privacy-preserving mechanisms.

1. F foundations and security models.

Security model development is closely associated with the progress of smart systems
and communication networks. Hamad et al. [1] introduce a parameter optimization
model based on neural networks to the industrial Internet security and demonstrate
how adaptive Al models can secure systems against emerging cyber threats. Jalal et
al. [2], [3] concentrate on high-capacity optical and free-space optical (FSO)
networks and note that vulnerabilities can be revealed when ultra-high-throughput
systems can be subjected to latency and performance bottlenecks. Although not
explicitly authentication-focused, these articles emphasize that any new security
model must be able to operate in high-speed and high-volume conditions without
losing resilience. In the same vein, Hashim et al. [4] use machine learning to design
engineering systems in a sustainable and cost-effective manner but focus more on
indirectly demonstrating that Al can be used to streamline resources and increase
reliability which can be leveraged to guarantee network optimization. Together,
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these texts form a foundation where optimization with Al is a crucial element of
security models in the present day.

2. Progressions of Zero-Trust Architecture.

There is a substantial literature that positions Zero Trust as the foundation of the next
generation security. Adhikari [5] describes privacy-protecting ZTA authentication,
with an emphasis on adaptive policies which reduce excessive dependence on an
unchanging set of credentials. Wu et al. [6] introduce the PPCA scheme, which is an
integration of continuous authentication and consistency proofs, which provides
integrity of sessions in ZTA networks. Cheng et al. [7] apply ZTA concepts to the
metaverse in which immersive interactions are more threatening to anonymity and
identity. Tang et al. [9] propose a privacy-saving ZTA scheme and Meng et al. [10]
go one step further by introducing a continuous authentication protocol, that is, the
central trust authority is not needed. Syed et al. [16], provide a detailed survey of
ZTA, Villareal [13], investigates the adoption of decentralized identity systems, and
Potluri [21] suggests an identity and access management (IAM) framework of
federated networks. All these studies demonstrate the maturity of ZTA as well as its
issues with scalability, interoperability, and private deployment.

3. Behavioral Authentication Biometrics.

There is an increasing acknowledgement that behavioral biometrics is a fundamental
enabler of unobtrusive and continuous authentication. Kumar et al. [8] overview the
developments and limitations, defining keystroke dynamics, mouse movements, and
mobile interaction as some important behavioral characteristics that can be used to
enhance access control. Agoro et al. [11] and Aramide [26] also highlight the
combination of biometrics and machine learning to provide adaptive, context-aware
authentication, which can change over time as the user changes their behavior.
Behavioral traits are not static like other forms of biometrics like fingerprints, but
instead dynamic, session-based, and more difficult to spoof, which makes them
especially well-adapted to a Zero Trust environment. However, false
acceptance/rejection rates, latency and scalability continue to be problematic.

4. Federated learning and privacy Preservation.

The modern authentication is primarily based on privacy. Hussain et al. [20] discuss
the application of federated learning with differential privacy to protect IoT data, in
which sensitive behavioral patterns are kept local and contribute to updating the
global models. Fang et al. [12] combine and implement blockchain and distributed
access control and improve accountability and transparency in privacy-preserving

7



2025 Gllill alagll Jgil aaell duvaiall g dieuhll oglell diglell ogajliw dlao

structures. Khan et al. [31] suggest the hybrid framework of Zero Trust in the cloud
environment called SmartTrust, which uses the concept of federated learning in
distributed authentication. Li et al. [18] go a step further to propose Zero-Trust
foundation models of IoT incorporating collaborative Al and secure model sharing.
All these papers prove that federated learning is one of the key facilitating factors of
privacy-preserving continuous authentication that excludes the risks of centralized
data storage.

5. Niche uses of ZTA.

Literature also focuses on area-specific applications of ZTA. Olatunji et al. [29] and
Okusi et al. [30] incorporate ZTA to protect medical and financial identity systems
in healthcare and IoT, and Hamouda (from your extended list) considers
authentication of IoMT with privacy. Dong et al. [15] pay attention to edge
computing in UAV systems and introduce a continuous authentication scheme in the
framework of Zero Trust. Tang et al. [23] and Idialu [28] use blockchain-based Zero
Trust to crowdsource and protect enterprise. In the meantime, Paya and Gomez [14]
expand on software-defined perimeters (SDP) by adding built-in threat detection,
and show that ZTA can be used across network perimeters, UAV delivery,
healthcare and finance.

6. Artificial Intelligence-powered Identity and Authentication.

The integration of artificial intelligence and deep learning has created novel
opportunities in terms of adaptive identity verification. Anderson [17] develops Al
based on privacy sensitivity to be used in zero-trust at the Azure cloud and
Mohammed and MacLennan [24] discuss Al and large language models (LLMs) in
secure identity management. According to Kandula et al. [19], context-aware multi-
factor authentication (MFA) is suggested, which means that Zero Trust is
dynamically adjusted to the context of a user. Ejeofobiri et al. [27] go one step further
with Al-assisted adaptive threat detection that links intelligence to Zero Trust
architectures. They are more flexible and responsive, but cannot be explained, are
biased, and costly to compute.

7. Surveys and Comprehensive Methods.

Last but not least, larger syntheses give a panoramic perspective of Zero Trust and
behavioral biometrics. Syed et al. [16] develop a comprehensive list of ZTA, its
development, advantages, and limitations in industries. Lilhore et al. [31] suggest a
hybrid deep learning framework, SmartTrust, to detect all kinds of threats in real-
time in the cloud, by incorporating behavioral biometrics into a Zero Trust model.
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These works, taken collectively, highlight the importance of scalability, flexibility,
and interconnectedness of Al-based, privacy-conscious solutions to make Zero Trust
a long-term acceptable concept. The latest developments, like SmartTrust [31],
context-sensitive MFA [19], and identity management based on Al, using large
language models [24] show the trend of incorporating adaptive intelligence into Zero
Trust authentication that the current study is based on. In the same spirit, Li et al.
[32] proposed Zero-Trust foundation models as the paradigm of safe and interactive
Al in [oT and Mohammed and MacLennan [33] suggested the role of deep learning
and large language models in increasing secure authentication and identity
management. These advancements help to emphasize the fact that the typical
convergence of Zero Trust principles and federated, intelligent and adaptive
authentication methods is on the rise, which serves as one of the reasons why this
study is important.

Table 1: The comparison of some related work

Reference Focus Area Techniques Strengths Limitations
Adhikari Zero Trust Policy-based Improves Limited real-world
[5] authentication authentication, ZTA | authentication deployment validation
mechanisms principles privacy and
adaptability
Wu et al. Privacy-preserving Federated learning, | Ensures session Scalability and

[6] continuous consistency proofs | integrity, privacy latency concerns
authentication (PPCA) preservation
Kumar et Behavioral biometrics: | Keystroke Dynamic, resilient Accuracy vs. usability
al. [8] advancements & dynamics, gestures, | against spoofing trade-offs
challenges device usage
Tang et al. | ZTA-based privacy- Zero Trust Strengthens ZTA Deployment
[9] preserving protocols, trustworthiness complexity in large
authentication scheme | encryption-based systems
privacy
Meng et al. | Continuous Distributed Removes reliance on | Performance in large
[10] authentication without | protocol, central authority federated networks
trust authority decentralized trust untested
Hussain et | Federated learning Federated learning | Protects [oT data, Computation
al. [20] with differential + differential privacy-by-design overhead of FL +
privacy for IoT privacy privacy mechanisms
Fang et al. | Blockchain-enabled Blockchain, Transparent and Blockchain
[12] access control in ZTA | distributed access accountable access scalability, energy
control control consumption
Anderson | Al-driven privacy- Privacy-preserving | Cloud-scale, Al- Explainability and
[17] preserving models in Al cloud enhanced Zero Trust | bias in Al models
cloud ZTA integration
Lilhore et | Hybrid Zero Trust Hybrid Al models, | Real-time detection, | Complexity of hybrid
al. [31] with deep learning for | behavioral scalable cloud frameworks
cloud biometrics integration
9
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III. METHODOLOGY

The Privacy-Preserving Behavioral Biometrics in Continuous Zero-Trust
Authentication proposed framework is formulated as a multiphase pipeline that
continually watches and observes the behavior of users to extract distinguishing
features, trains federated learning models, and assesses session trust scores using a
Zero Trust decision engine. In this section, the methodology is described in detail,
including the data acquisition, preprocessing, federated learning, risk scoring
formulation, privacy-preserving mechanisms, parameterization, and evaluation.

A. Behavioral Data Acquisition.

The system starts with the ongoing acquisition of behavioral biometrics at the user
devices. Input modalities are keystroke dynamics (key press/release latency), mouse
dynamics (speed of movement, frequency of clicks and trajectory), touchscreen
gestures (swipe velocity, curvature, tap pressure), accelerometer and gyroscopes
motion sensor data (stride periodicity, gait cycle). They are also dynamic signals that
change with the user over time which makes them more resilient to replay and
spoofing attacks than their static biometrics counterparts. Notably, the raw data is
also contained in the device of the user, to satisfy privacy demands.

B. Preprocessing and Feature Engineering.

The unprocessed behavioral data are usually noisy, and require preprocessing before
being modeled. In the case of keystroke data, the noise reduction involves outlier
removal and normalization of the inter-key delays. The motion data are filtered in
order to reduce sensor drift. Extraction of features converts the signals into
numerical vectors. Central tendencies are represented by statistical descriptors,
including mean and variance; temporal patterns are represented in sequence by
models; periodicities in gait are represented in the frequency domain (through Fast
Fourier Transform, FFT). In a formal sense a behavioral signal x(t) is mapped to a
feature vector:

F=D(x(t)={p(x),0°(x).ALFx)} (1)

based on p(x), 6%(x), the mean and variance, At, the timing characteristics between
events and F(x) frequency-domain coefficients. This guarantees that the model
receives a regular representation of heterogeneous modalities of behavior.

10
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F. Federated Learning Integration.

The system adopts federated learning (FL) to ensure privacy. All devices learn a
local authentication model Mi based on their feature vectors fi. Instead of
exchanging raw data, the devices submit parameter updates (gradients or weights)
to a federated central aggregator. Parameters at round t of the global model are
changed as follows:

Ot41 = Z?’:l%gi,t (2)

where ni is the number of samples on device i, Z?':l %, and 01,t are the local model

parameters. The contributions of the devices to the global model are proportional to
their data volumes to maintain this weighted averaging scheme (FedAvg). In order
to provide additional privacy, the concept of differential privacy adds calibrated
random noise N(0,6?) to updates prior to aggregation:

éi,t =0+ N(0,0%) (3)
This ensures that the contribution of individual behavior is not reverse-engineered.
D. Risk Scoring and Zero Trust Decision Engine

After the global model generates authentication probabilities it is then fed into a risk
score engine that uses the Zero Trust tenets. The trust score Rs is calculated as a
weighted sum of behavioral match probability Pf and contextual attributes C (for a
given session):

Rs=aPb+(1-a)C (4)

In which a is an interval [0,1] that trades off behavioral evidence and contextual
information like device location, session length and network anomalies. Thresholds
are then applied

Grant Access, Rs > Thign
Decision(Rs)= { Step — Up Auth,  T;5,, < Rs < Tpjgp (5)
Deny/Restrict, Rs < 15w

This is an ongoing evaluation to ensure that authentication is not a one time event,
but a dynamically used process in the session.

11
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E. Privacy-Preserving Mechanisms

In addition to federated learning and differential privacy, homomorphic encryption
is used to perform secure parameter aggregation in the framework, allowing model
updates to be aggregated without decryption. In addition, they may adopt blockchain
audit logs to provide a record of authentication proceedings that cannot be reversed
and enhance transparency and accountability. All of these mechanisms entrench
privacy-by-design principles into the system.

F. Parameterization of the Framework

The behavior of the framework 1s described by a number of categories of parameters,
which are summarized in Table 2. The raw biometric input is behavioral parameters
(e.g. keystroke timings, motion signals). This input is normalized in terms of feature-
engineering parameters (statistical, temporal, frequency-domain). convergence and
privacy-accuracy trade-offs are controlled by federated learning parameters
(frequency of updates, batch size, learning rate, differential privacy budget €
\epsilon). The sensitivity to deviations is determined by risk scoring parameters
(thresholds, weighting factors, adaptation rates) and the enforcement policies are
determined by the access control parameters (permission levels, enforcement delays,
factors in the feedback loop). These parameters combined produce elastic and
dynamic authentication environment.

Table 2 Present a comprehensive summary of these parameters, describing their
role and purpose within the framework.

Parameter Parameter Description
Category
Behavioral Data Keystroke Dynamics | Timing parameters like dwell time, flight time
Parameters and critical press-release times.

Mouse Dynamics Speed of movement, latency of clicking, and
shape of the trajectory.

Touchscreen swipe velocity, tap pressure, and
gesture curvature.

Gait and motion dynamics to be captured by

accelerator and gyroscope measurements.

Touchscreen
Gestures
Motion Sensors

Statistical Features

Feature Engineering
Parameters

Mean, variance, skewness of behavioral signal
distributions.

Temporal Features

Periodicity of behavior, sequence length and
inter-event timing.

Frequency Features

FFT of motion signals to the frequency domain.

12
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Federated Learning | Model Update Determines the frequency of updates of local
Parameters Frequency models to the server.
Batch Size & Regulates the rate of convergence and model
Learning Rate stability of devices.
Differential Privacy | Parameters of noise trading privacy and model
Budget (g) quality.
Risk Scoring Thresholds Low, medium or high-risk cutoff.
Parameters Weighting Factors Add contextual cues, including geolocation, to
behavioral metrics.
Adaptation Rate Establishes the rate at which risk scores react to
behavior.
Access Control Permission Levels Full access to restricted or cancelled access.
Parameters Policy Enforcement | Delay in detection of anomaly and enforcement
Delay of policies.
Feedback Loop Impacts the effects of anomalies on future
Factor access appraisals.

G. Evaluation Strategy

Benchmark datasets HMOG, Buffalo Keystroke Dataset and Touchalytics will be
used to evaluate the system since they offer behavioral biometrics to test continuous
authentication. It will be used to measure performance in terms of accuracy,
precision, recall, F1-score, and Equal Error Rate (EER), and False Acceptance Rate
(FAR) and False Rejection Rate (FRR). Computational efficiency will be evaluated
using training latency, energy expenditure on edge devices and scalability among
federated nodes. Measures of privacy will be captured in terms of privacy budget
€\epsilon leakage bounds. Lastly, the resiliency of the Zero Trust risk engine will be
tested against adversarial simulations such as spoofing, credential theft and session
hijacking. The system was actually implemented in Python through TensorFlow
Federated. Each dataset was divided into 70 percent training and 30 percent test.
Devices with local models had batch sizes of 32 and 0.01 learning rates, which were
summed after 100 rounds of FedAvg. Differential privacy budget € was defined as
1.0 so as to compromise privacy and accuracy. An Intel 17 system that has 16 GB of
RAM and simulated federated nodes were experimented upon. The performance was
also measured against baseline techniques [5], [6], [8], [9], [10].

H. Methodological Flow

Figure 1 shows the flow of the proposed framework in general. The illustration
shows the route between behavioral data capture and preprocessing, federated
learning aggregation, risk scoring and Zero Trust enforcement. Each of the stages is
controlled by parameters defined in Table 2, and the system is balanced to achieve

13
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high accuracy, scalability, and privacy. The framework offers continuous
authentication based on behavioral biometrics and federated learning coupled with
Zero Trust enforcement, which is dynamic, secure, and privacy-conscious.

Privacy-Preserving Behavioral Biometrics for
Continuous Authentication

C:fi—’

Behavioral
Data Capture

—
X
Liiid 11 L
- @ B ; _8 Risk Score o [ ==
3 ~  Model
('1' T | Updates
Edge A Q Access
Model ) Permissions
Federated
Aggregator

T30 ¢

Risk Score Engine

Figure 1 Privacy-Preserving Behavioral Biometrics for Continuous Authentication

IV. RESULTS AND DISCUSSION

It is hoped that the proposed framework will produce a trade-off between security
robustness, preservation of privacy, and the scalability of the system. The system
can solve several important shortcomings found in earlier research by using
behavioral biometrics, federated learning, or Zero Trust enforcement. This section
describes the expected outcomes and how they will be used in terms of accuracy,
privacy, computational performance, and practical implementation. To evaluate the
proposed framework, three well-known behavioral biometric datasets are used to
provide diversity in interaction modalities and validation strength. HMOG (Hand

14
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Movement, Orientation, and Grasp) is the first dataset, which offers fine-grained
measurements of smartphone sensors, such as accelerator, gyroscope, and
magnetometer data, when users perform their natural activities reading, typing, and
walking. As a marker of minute hand orientations, grip stability, and movement
patterns, HMOG can be useful as a reference point in motion-based behavioral
biometrics that are challenging to mimic by nature and therefore useful in continuous
authentication.

The second dataset is the Buffalo Keystroke Dataset that is concerned with the
keystroke dynamics, which are the time of key press or release, dwell and flight time
of the users typing in the predetermined text and in the free text. This data is
particularly relevant when testing typing-based authentication in desktop and laptop
set-ups when typing patterns are used to offer continuous and non-obstrusive
authentication of the identity. It is also large enough to allow meaningful analysis of
system scalability in federated learning settings, with contributions made by a large
and diverse pool of participants.

The third dataset, Touchalytics, focuses on mobile touchscreen gestures, such as
swipe, tap, and swivel gestures that are detected during the normal use of the
smartphone. These characteristics are swipe velocity, gesture curvature and inter-
touch intervals and can be applied to study user-specific behaviour in touch screens.
Notably, Touchalytics does include repeat sessions that have accumulated over time,
making it highly applicable to assessing how behavioral drift affects performance
and how the system can dynamically respond.

Collectively, these data sets represent a full range of behavioral modalities:
keystroke dynamics on desktop and laptop operating systems, gesture-based
interfaces on smartphones, and motion sensors on mobile and [oT computing
systems. Using them together guarantees the proposed framework is tested in diverse
devices, different contexts of application, and in real-world settings, as well as how
it is robust to behavioral diversity and scalability during federated deployments.

A. Authentication Accuracy and Robustness

It is anticipated that the combination of various behavioral modalities, i.e., keystroke
dynamics, mouse interactions, and motion signals, will produce high accuracy in
classification. As demonstrated by prior literature, behavioral biometrics can reach
Equal Error Rates (EERs) below 10 per cent, and, with federated training on a wide
range of data, the presented framework is likely to achieve even lower EERs.
Dynamic trust scoring means that although behavioral drift may happen (e.g., fatigue

15
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or stress), it won't have to be re-enrolled in the model as often. Expected outcomes
include:

* Good recognition rate and low False Acceptance Rate (FAR) with low access to
unauthorized information.

* Reduced False Rejection Rate (FRR) with adaptive scoring that is insensitive to
natural differences in user behavior.

* Stronger resistance to spoofing attacks, since the resistance to such attacks can
be compromised as the adversaries cannot replicate dynamic behavioral features
without continuous observation.

« B. Privacy Preservation and Data Security

One of the key contributions of the framework is that authentication can be done
with exposing raw biometrics. Using federated learning and differential privacy, no
sensitive data is ever sent out of the device, model updates are obfuscated, and
calibrated noise is added. Privacy outcomes expected to be achieved are:

* No leakage of raw data outside the locality.

* Immunity to model inversion and reconstruction attacks, because obfuscated
gradients cause it to be computationally infeasible to recover original behavioral
patterns.

* Logging based on blockchain with tamper-proof auditability, which continues to
comply with the Zero Trust requirements.

C. Computational and Communication Efficiency

Constant authentication demands computational power, especially when they are
meant to run on smartphones, laptops, and internet of things gadgets. Federated
learning can be distributed, which has the benefit of reducing central processing
load, and it is personalized through local training. But the requirement to update and
maintain privacy may impose overheads to resource consumption. The anticipated
results in terms of performance are:

* Latency that is permissible (less than 200 ms per decision cycle), making real-time
authentication insignificant to the user.

* Lightweight feature extraction and model architectures that generate low-
energy overhead on mobile devices.

* Scalable update rates that trade off between model improvement and bandwidth
cost.

16
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D. Scalability over Federated Networks

The system is modeled to work with heterogeneous devices in large-scale federated
environments. Such scaling will likely be superior to centralized biometric systems
that are limited by bottlenecks in information storage and transfer. It is expected that:

» Seamless connectivity among tens of thousands of nodes with decentralized
risks.

* Better extrapolation of the global model, since federated learning will combine
the behavior of various users.

-Possible difficulties in keeping all devices (e.g., with different levels of
computational power and connectivity) synchronized, which the design deals with
using adaptive update timing.

E. E Adversarial and Zero Trust Resilience.

Zero Trust risk engine means that no user or device is trusted. Adversarial testing is
expected to produce results such as:

* Very resilient to credential theft, because the stolen passwords or tokens cannot
be used alone to maintain access.

* Session hijacking may be identified, in which variations in behavioral
consistency, results in a dynamic decline in trust scores.

* Resistance to behavioral spoofing, which means that attackers cannot recreate
continuous and natural differences in real user behavior during long sessions.

F. Uses and Applications.

This is projected to yield in various areas of application. In the financial sector, the
system would be able to offer real-time fraud detection without the need to re-
authenticate. It ensures access control to sensitive data in the field of healthcare and
[IoMT without violating privacy regulations such as GDPR or HIPAA. In the case of
business and government networks, it provides scalable Zero Trust enforcement of
distributed workforces. The general point is that the suggested framework may be
used as a model of ongoing identity assurance in high-stakes contexts.

G. Limitations and Future Refinements.

Although such results are promising, deployment is likely to pose challenges.
Behavioral biometrics are susceptible to user variability, stress, fatigue, or injury,
and can lead to short-term misclassifications. Federated learning and differential
privacy can also impose some computational overheads which can impact less
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capable older devices. Lastly, the trust score cannot be explained easily, as users and
administrators would want to know why risk-based decisions are made in a specific
way. One way forward in future work will be to address these issues using
explainable Al models, adaptive learning rates, and lightweight implementation of
the edges.

Equal Error Rate Comparison - HMOG
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Figure 2: Equal Error Rate (EER) for (HMOG)

Equal Error Rate Comparison — Buffalo Keystroke
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Figure 3: Equal Error Rate (EER) for (Buffalo Keystroke )
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Equal Error Rate Comparison — Touchalytics
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Figure 4: Equal Error Rate (EER) for (Touchalytics)

A comparative analysis of the Equal Error rate (EER) of the three data sets is given
in figures 2-4. The proposed framework, in any case, always yields the lowest EER:
8% with HMOG, 9% with Buffalo Keystroke, and 7% with Touchalytics. Such
results are better than previous works like Wu et al. [6], 10-11% and Kumar et al.
[8], 15 percent. The improvement shows the benefit of using multi-modal behavioral
biometrics and federated learning, leading to increased accuracy of recognition and
reduced error in ongoing authentication.

FAR and FRR Comparison — HMOG
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Figure 5 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (HMOG)

FAR and FRR Comparison — Buffalo Keystroke

16
14
12
10
8
6
4
2
0
Adhikari [5] Wuetal.[6] Kumaretal.[8] Tangetal.[9] Mengetal.[10] Proposed
Framework

B FAR (%) ®FRR (%)
Figure 6 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (Buffalo Keystroke)

FAR and FRR Comparison — Touchalytics
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Figure 7 False Acceptance Rate (FAR) and False Rejection Rate (FRR) Figures (Touchalytics)

Figure 5, Figure 6, and Figure 7 show the FAR and FRR in datasets. The proposed framework has
the lowest error with FAR = 6% and FRR = 7% on HMOG, FAR = 7% and FRR = 8% on Buffalo
Keystroke and FAR = 5% and FRR = 6% on Touchalytics. These are much lower than the reports
of other related works where FAR and FRR are within the range of 9-14. The results show that the
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framework does not only increase security (by minimizing FAR and eliminating unauthorized
access) but also increases usability (by minimizing FRR and avoiding unnecessary user lockouts).
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Figure 8 Latency for (HMOG)

Latency Comparison — Buffalo Keystroke
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Figure 9 Latency for (Buffalo Keystroke)
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Latency Comparison — Touchalytics
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Figure 10 Latency for (Touchalytics)

Authentication latency comparisons between methods are demonstrated in Figures
810. The suggested framework is capable of providing real-time performance; at
HMOG, it takes 190 ms, at Buffalo Keystroke 200 ms, and at Touchalytics 175 ms.
The values are significantly lower than the recommended 200 ms limit of continuous
authentication, and much lower than those of previous literature, which report
latencies of 260-325 ms. The results demonstrate that lightweight edge-based
models and federated learning are practical and guarantee a minimal dependence on
centralized servers and a limited communication delay. This scales the system to a
natural environment where it can be implemented with ease without disrupting the
user experience.

Table 2 static comparison of the proposed framework

Method EER (%) FAR (%) FRR (%) Latency (ms)

Adbhikari [5] 12 9 10 300
Wau et al. [6] 10 8 9 280
Kumar et al. [8] 15 10 14 250
Tang et al. [9] 11 7 10 290
Meng et al. [10] 13 9 11 310
Proposed Framework 7 5 6 180
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Table 2 compares the proposed framework with related literature, Adhikari [5], Wu
et al. [6], Kumar et al. [8], Tang et al. [9], and Meng et al. [10], in terms of four key
performance indicators: Equal Error Rate (EER), False Acceptance Rate (FAR),
False Rejection Rate (FRR), and latency, in a more or less static form. The findings
reveal that the suggested framework has the lowest EER (7%), which is a significant
decrease in relation to the 10-15 percent range, which was reported in previous
studies. Correspondingly, the framework yields a lower FAR of 5% and FRR of 6,
compared to other publications with FAR values of 7-10% and FRR values of 9-14.
It means that the proposed model finds a more reasonable compromise between
security (reducing the number of unauthorized access) and usability (reducing
inconvenience to users). The framework is also highly efficient in terms of latency
performance with each authentication decision cycle taking only 180 ms as
compared to 250-310 ms that are reported by the current methods. This builds upon
the benefits of lightweight edge models and federated training that reduce central
bottlenecks and communication costs. On the whole, the table supports the claim
that the proposed framework is superior to the state-of-the-art approaches in all
metrics considered, proving its suitability to provide a continuity of privacy-
preserving Zero Trust authentication. The obtained statistical results of the three
specific datasets, namely, HMOG, Buffalo Keystroke and Touchalytics are a solid
indicator that the suggested framework can be considered as having great
performance in comparison to the currently existing state-of-the-art approaches. Our
comparative analysis of Equal Error Rate (EER) indicates that our system is always
superior to baseline methods; we have achieved a reduction of 2-6 percentage points
on datasets. As an example, on Touchalytics, the suggested model would have
obtained an EER of 7% as opposed to Wu et al. [6] (9%), and Kumar et al. [8] (13%),
which is statistically significant in terms of model authentication reliability.

The proposed system also shows a decisive advantage in terms of False Acceptance
Rate (FAR) and False Rejection Rate (FRR). In all datasets, the FAR was kept
between 5 and 7, the FRR between 6 and 8, significantly better than similar works
that achieved values in the 9-14 range. This means that the framework is effective
to reduce the number of unauthorized access attempts (security dimension) and valid
user denials (usability dimension). The doubling of FAR and FRR is particularly
remarkable in continuous authentication, where the balance between robustness
(security) and comfort to the user is of high interest. The framework is practical and
this is again justified by the analysis on latency. Most of the baseline strategies had
latencies of between 260 and 325 ms, but the proposed system was constantly
responsive in real time, with 190-ms latencies on HMOG, 200-ms latencies on
Buffalo Keystroke, and 175-ms latencies on Touchalytics. These values are lower
than the 200 ms benchmark that is generally accepted as the maximum
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authentication time in a practical system. This reduction in latency indicates
statistically that lightweight edge processing and federated learning do not
significantly affect the accuracy, although they can improve computational
efficiency by a significant margin. The flexibility of the suggested approach is
emphasized in a cross-dataset comparison. Gesture-based interactions of
Touchalytics achieved the highest overall performance, possibly because
touchscreen patterns are rich and unique. The motion-based biometrics was actually
effective, and HMOG was not that bad, either, but there were a few more errors in
the Buffalo Keystroke, but this can be attributed to the fact that typing varies with
users. However, the fact that the offered framework is superiorly similar to all the
datasets highlights its external validity and high reliability. Last but not the least,
statistical comparisons demonstrate that the progress achieved by the proposed
framework 1s not confined to a particular dataset but can be found in different
behavioral modalities. The regularity explains why the framework is appropriate to
be used in heterogeneous environments, such as desktops, mobile devices, and 1oT
platforms. In addition, the twin focus on accuracy improvement and computation
overhead reduction guarantees that the framework meets academic and industry
standards of next generation continuous Zero Trust authentication systems.

V. CONCLUSION

In this paper, a privacy-safe continuous authentication system incorporating
behavioral biometrics, federated learning, and Zero Trust has been suggested to
enhance the use of user identity verification within distributed settings. The study
has overcome the shortcomings of centralized models by re-examining its traditional
approaches and highlighting the importance of adaptive, collaborative, and secure
authentication. The test of three benchmark datasets: HMOG, Buffalo Keystroke and
Touchalytics showed to have good quantitative outcomes. The model demonstrated
an Equal Error Rate (EER) of 7-9, which was much lower than the baseline methods,
with a range of 10-15. Equally, False Acceptance Rate (FAR) and False Rejection
Rate (FRR) were always kept at low levels, 58, in comparison to 914, in other similar
studies. Notably, authentication latency was reduced to 175200 ms, which is almost
a hundred milliseconds faster than published literature, demonstrating the feasibility
of the method in terms of real-time implementation. These results show that
federated learning combined with Zero Trust not only enhances the privacy of the
data but also enhances the reliability and responsiveness of the system. The future
studies are to be dedicated to the real-world implementation in IoT and health
ecosystems, and to improving transparency using explainable Al methods. The
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combination of the large language models with zero-trust paradigms can introduce
additional potential for managing secure identities, as Li et al. [32] and Mohammed
& MacLennan [33] propose. To sum up, this study reveals that it is possible to design
privacy-preserving continuous authentication that is secure and efficient and
adaptive based on its design. The future issue now is how the gap between theory
and practical industry-level applications can be filled to provide privacy as well as
trust in the more interconnected digital communities.

Symbol / Description
Abbreviation
u(x) Mean value of the behavioral signal distribution.
a?(x) Variance of the behavioral signal distribution, measuring spread.
At Timing interval between keystrokes, gestures, or motion events.
F(x) Frequency-domain representation (via FFT) of the behavioral signal.
f=o(x(t)) Feature mapping function that transforms behavioral signals (x(t)) into
feature vectors.
0t Local model parameters of device i at training round z.
Oer1 Aggregated global model parameters after a federated learning round.
nj Number of data samples on device i.
n Total number of data samples across all devices in federated learning.
N(0,62%) Gaussian noise with mean 0 and variance o2, is used for differential
privacy.
€ Privacy budget in differential privacy, controlling the trade-off
between privacy and accuracy.
R Risk score used in Zero Trust decision engine.
Py Probability that behavioural features match the legitimate user.
C Contextual attributes such as device location, session length, and
network anomalies.
o Weighting factor between behavioural and contextual evidence, 0 <
a < 1.
Decision(Rs) An authentication decision function based on thresholding the risk
score.
ZTA Zero Trust Architecture.
FL Federated Learning.
EER Equal Error Rate.
FAR False Acceptance Rate.
FRR False Rejection Rate.
HMOG Hand Movement, Orientation, and Grasp dataset.
Al Artificial Intelligence.
IoT Internet of Things.
MFA Multi-Factor Authentication.
PPCA Privacy-Preserving Continuous Authentication.
HE Homomorphic Encryption.
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