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Abstract 

 The main object of this paper is to introduce a new extension of the beta function 

involving the generalized Mittag-leffler function and study its important properties, 

like integral representation, summation formula, derivative formula, beta 

distribution and transform formula. We introduce new extended hypergeometric and 

confluent hypergeometric functions. 

Keywords: Beta function, Beta Distribution, Confluent hypergeometric function, 

Gamma function, Hypergeometric function, Summation formulas, Transform 

formula 

Introduction: 

There are many extensions and generalizations of the beta function, hypergeometric 

function and confluent hypergeometric function have been considered by several 

authors (see [1, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15]). In this paper, we study another 

extension of the Euler Beta function and investigate various formulas, such as 

integral representation, summation formula and derivative formula. Further, we 

obtain beta distribution and its some statistical formulas. We extend also the 

definition of hypergeometric and confluent hypergeometric functions and study their 

various properties. 

The classical Gauss hypergeometric function (see [17]) is defined as 

𝐹(𝛿1, 𝛿2; 𝛿3; 𝜏) = ∑
(𝛿1)𝑛(𝛿2)𝑛

(𝛿3)𝑛

∞

𝑛=0

 
𝜏𝑛

𝑛!
,                                             (1.1) 

where (𝛿)𝑛 (𝛿 ∈ ℂ) is the Pochhammer symbol defined by 

(𝛿)𝑛 =
𝛤(𝛿 + 𝑛)

𝛤(𝛿)
 .                                                                (1.2) 

The confluent hypergeometric function (see [17]) is defined by  

𝛷(𝛿1; 𝛿2; 𝜏) = ∑
(𝛿1)𝑛

(𝛿2)𝑛

∞

𝑛=0

 
𝜏𝑛

𝑛!
 .                                                  (1.3) 

The Gamma function 𝛤(𝜏) developed by Euler [3] with the intent to extend the 

factorials to values between the integers is defined by the definite integral 

𝛤(𝑧) = ∫ 𝑒−𝑡 𝑡𝑧−1

∞

0

 𝑑𝑡      ,     𝑅𝑒(𝑧) > 0 .                                         (1.4) 

Among various extensions of gamma function, we mention here the extended 

gamma function [4] defined by Chaudhry and Zubair 



 

70 
 

𝛤𝑝(𝑧) = ∫  𝑡𝑧−1

∞

0

exp (−𝑡 −
𝑝

𝑡
)  𝑑𝑡   ,     (𝑅𝑒(𝑝) > 0).                           (1.5) 

The Euler Beta function    𝐵(𝑧1, 𝑧2) (see [3]) is defined by 

𝐵(𝑧1, 𝑧2) = ∫ 𝑡𝑧1−1 (1 − 𝑡)𝑧2−1

1

0

 𝑑𝑡                                                             (1.6) 

=
𝛤(𝑧1)𝛤(𝑧2)

𝛤(𝑧1 + 𝑧2)
  =  

(𝑧1 − 1)! (𝑧2 − 1)!

(𝑧1 + 𝑧2 − 1)!
,                                   (1.7) 

                       

where     𝑧! = Γ(𝑧 + 1)  ,     𝑧 = 0,1,2,4, …   , (𝑅𝑒(𝑧1) > 0   , 𝑅𝑒(𝑧2) > 0).                  

In 1997, Choudhary et al. [5] introduced an extension of the beta function defined 

by 

𝐵𝑝(𝑧1, 𝑧2) = ∫ 𝑡𝑧1−1 (1 − 𝑡)𝑧2−1 𝑒𝑥𝑝 (−
𝑝

𝑡(1 − 𝑡)
)

1

0

 𝑑𝑡,               (1.8) 

    where                          𝑅𝑒(𝑝) ≥ 0    ,     (𝑅𝑒(𝑧1) > 0   , 𝑅𝑒(𝑧2) > 0). 

Chaudhary et al. [6], used the new extended the beta function  𝐵𝑝(𝛿1, 𝛿2)  to 

introduce an extended hypergeometric and confluent hypergeometric functions 

defined respectively as  

𝐹𝑝(𝛿1, 𝛿2, 𝛿3; 𝜏) = ∑(𝛿1)𝑛  
𝐵𝑝(𝛿1 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
 ,                  (1.9) 

                  (𝑝 ≥ 0 ,   |𝜏| < 1 , 𝑅𝑒(𝛿1) > 0 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0), 

and 

Φ𝑝(𝛿2; 𝛿3; 𝜏) = ∑  
𝐵𝑝(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
,                         (1.10) 

                              (𝑝 ≥ 0 , |𝜏| < 1 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

In 2018, Shadab et al. [15] introduced an extended the beta function in terms of  

the classical Mittag-Leffler function defined as 

𝐵𝛼
𝑝(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−11

0
(1 − 𝑡)𝛿2−1𝐸𝛼𝑒𝑥𝑝 (−

𝑝

𝑡(1−𝑡)
) 𝑑𝑡,                       (1.11)                  

   𝑅𝑒(𝑝) ≥ 0 , 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿2) > 0, 𝛼 ∈ ℝ0
+, 

where 𝐸𝛼(∙) is the classical Mittag-Leffler function defined as [10] 
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𝐸𝛼(𝑥) = ∑
𝜏𝑛

Г(𝛼𝑛 + 1)

∞

𝑛=0

,             𝑥 ∈ 𝐶  , 𝛼 ∈ ℝ0
+         

Shadab et al. [15], used the extended Beta function 𝐵𝛼
𝑝(𝛿1, 𝛿2) to introduce a new 

extended hypergeometric and confluent hypergeometric functions defined 

respectively as 

𝐹𝑝,𝛼(𝛿1, 𝛿2, 𝛿3; 𝜏) = ∑(𝛿1)𝑛  
𝐵𝛼

𝑝(𝛿1 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
.                   (1.12) 

   (𝑝 ∈ ℝ0
+,   ,   𝛼 ∈ ℝ+ , |𝜏| < 1, 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

The confluent hypergeometric function is defined as Φ  

Φ𝑝,𝛼(𝛿2; 𝛿3; 𝜏) = ∑  
𝐵𝛼

𝑝(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
 ,                    (1.13) 

                      (𝑝 ∈ ℝ0
+,   ,   𝛼 ∈ ℝ+ , |𝜏| < 1,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

In 2018, Al-Gonah et al. [1], introduced a new extended Beta function in terms of 

the classical Mittag-Leffler function defined as 

𝐵𝑝,𝛼
𝜆 (𝑎, 𝑏) = ∫ 𝑡𝑎−1

1

0

(1 − 𝑡)𝑏−1𝐸𝑝,𝛼
𝜆 (−

𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡,             (1.14) 

𝑅𝑒(𝑝) ≥ 0 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑎) > 0, 𝑅𝑒(𝑏) > 0 

Al-Gonah et al. [2] used the extended Beta function 𝐵𝑝,𝛼
𝜆 (𝑎, 𝑏) to introduce a new 

extended hypergeometric and confluent hypergeometric functions defined 

respectively as 

𝐹𝑝,𝛼
𝜆 (𝑎, 𝑏; 𝑐; 𝑧) = ∑(𝛿1)𝑛  

𝐵𝑝,𝛼
𝜆 (𝑎 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
,                (1.15) 

 𝑅𝑒(𝑝) ≥ 0 , |𝑧| < 1 , 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑎) > 0, 𝑅𝑒(𝑏) >  𝑅𝑒(𝑐) > 0. 
 
   

Φ𝑝,𝛼
𝜆 (𝑏; 𝑐; 𝑧) = ∑  

B𝑝,𝛼
𝜆 (𝑐 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
,                      (1.16) 

𝑅𝑒(𝑝) ≥ 0 , |𝑧| < 1 , 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑏) >  𝑅𝑒(𝑐) > 0. 

𝐸𝛼,𝛽
𝛾

 (𝑥) = ∑
(𝛾)𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

 
𝑥𝑘

𝑘!
, 𝛼, 𝛽, 𝛾 𝜖ℂ, 𝑅𝑒 (𝛼) , 𝑅𝑒 (𝛽) , 𝑅𝑒 (𝛾)  > 0 .    
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In 2020, Oraby and Rizq [12], introduced a new extended Beta function in terms of 

the classical Mittag-Leffler function defined as 

𝐵𝑝,𝛼
𝜆,𝑚(𝑎, 𝑏) = ∫ 𝑡𝑎−1

1

0

(1 − 𝑡)𝑏−1𝐸𝜆,𝛼 (−
𝑝

𝑡𝑚(1 − 𝑡)𝑚
) 𝑑𝑡,             (1.17) 

𝑅𝑒(𝑝) ≥ 0 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑚) > 0 , 𝑅𝑒(𝑎) > 0, 𝑅𝑒(𝑏) > 0 

Oraby et al. [12] used the extended Beta function 𝐵𝑝,𝛼
𝜆,𝑚(𝑎, 𝑏) to introduce a new 

extended hypergeometric and confluent hypergeometric functions defined 

respectively as 

𝐹𝑝,𝛼
𝜆,𝑚(𝑎, 𝑏; 𝑐; 𝑧) = ∑(𝛿1)𝑛  

𝐵𝑝,𝛼
𝜆,𝑚(𝑎 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
,                (1.18) 

 

(
𝑅𝑒(𝑝) ≥ 0 , |𝑧| < 1 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑚) > 0 ,   𝑅𝑒(𝑎) > 0,

𝑅𝑒(𝑏) >  𝑅𝑒(𝑐) > 0
). 

   

Φ𝑝,𝛼
𝜆,𝑚(𝑏; 𝑐; 𝑧) = ∑  

B𝑝,𝛼
𝜆,𝑚(𝑐 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
,                      (1.19) 

       

𝑅𝑒(𝑝) ≥ 0 , |𝑧| < 1 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑚) > 0 , 𝑅𝑒(𝑏) > 0, 𝑅𝑒(𝑏) > 0. 

 

In 2022, Khan et al. [9] introduced a new extended Beta function in terms of the 

classical Mittag-Leffler function defined as 

𝐵𝛼,𝛽
𝑝,𝜇,𝑣(𝜃1, 𝜃2) = ∫ 𝑡𝜃1−1

1

0

(1 − 𝑡)𝜃2−1𝐸𝛼,𝛽 (−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡,             (1.20) 

   𝑅𝑒(𝑝) ≥ 0, 𝑅𝑒(𝜃1) > 0 , 𝑅𝑒(𝜃2) > 0, 𝛼, 𝛽 ∈ ℝ0
+ , 𝜇, 𝑣 ∈ ℝ+. 

where 𝐸𝛼,𝛽(. ) is the generalized Mittag-Leffler function defined as [11] 

𝐸𝛼,𝛽(𝑥) = ∑
𝑥𝑛

Г(𝛼𝑛 + 𝛽)

∞

𝑛=0

 ,    𝑥 ∈ ℂ  , 𝛼, 𝛽 ∈ ℝ0
+ .       

Khan et al. [9] used the extended Beta function 𝐵𝛼,𝛽
𝑝,𝜇,𝑣(𝜃1, 𝜃2) to introduce a new  

extended hypergeometric and confluent hypergeometric functions defined 

respectively as 
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𝐹𝑝,𝛼
𝜆,𝑚(𝜃1, 𝜃2; 𝜃2; 𝜔) = ∑(𝜃1)𝑛  

𝐵𝑝,𝛼
𝜆,𝑚(𝜃2 + 𝑛, 𝜃3 − 𝜃2)

𝐵(𝜃2, 𝜃3 − 𝜃2)

∞

𝑛=0

  
𝜔𝑛

𝑛!
,                (1.21) 

           𝑅𝑒(𝑝) ≥ 0 , |𝜔| < 1 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑚) > 0 ,   

                      𝑅𝑒(𝜃1) > 0, 𝑅𝑒(𝜃2) > 0, 𝑅𝑒(𝜃3) > 0 

   

Φ𝑝,𝛼
𝜆,𝑚(𝜃2; 𝜃2; 𝜔) = ∑  

B𝑝,𝛼
𝜆,𝑚(𝜃2 + 𝑛, 𝜃3 − 𝜃2)

𝐵(𝜃2, 𝜃3 − 𝜃2)

∞

𝑛=0

  
𝜔𝑛

𝑛!
,                      (1.22) 

       

 𝑝 ≥ 0 , |𝜔| < 1 , 𝑅𝑒(𝛼) > 0  𝑅𝑒(𝜆) > 0, 𝑅𝑒(𝑚) > 0 , 𝑅𝑒(𝜃2) > 0, 𝑅𝑒(𝜃3) > 0. 

 
 

2. A new extension of the beta function  

In this section, we introduce a new extension of the extended Beta function  and 

investigate various properties and representations 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡,        (2.1) 

   𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿2) > 0, 𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ0
+ , 𝜇, 𝑣 ∈ ℝ+,  

 where 𝐸𝛼,𝛽
𝛾,𝜎

 (. ) is the generalized Mittag-Leffler function defined in [15]. 
 

If  𝜎 = 1  in (2.1), we get the new result 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,1)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
𝛾

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡.        (2.2) 

If  𝜎 = 𝛾 = 1 , in (2.1), then (2.1) reduce to (1.20) 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,1,1)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
⬚ (−

𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡.        (2.3) 

If 𝜎 = 𝛾 = 1 and  𝜇 = 𝑣 = 𝑚  then (2.1) reduces to extended beta function (1.17) 

𝐵𝛼,𝛽
(𝑝,𝑚)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
⬚ (−

𝑝

𝑡𝑚(1 − 𝑡)𝑚
) 𝑑𝑡.        (2.4) 

If  𝜎 = 1 and  𝑢 = 𝑣 = 1, then (2.1)  reduces to extended beta function (1.14) 
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𝐵𝛼,𝛽
(𝑝,𝛾)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
𝛾

(−
𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡.        (2.5) 

If  𝛾 = 𝜎 = 𝛽 = 𝑢 = 𝑣 = 1 , then (2.1)  reduces to extended beta function (1.11). 

                   𝐵𝛼,1
(𝑝,1,1,1,1)

(𝛿1, 𝛿2) = 𝐵𝛼
𝑝(𝛿1, 𝛿2) = 𝐵𝛼(𝛿1, 𝛿2; 𝑝).                             (2.6) 

If  𝛾 = 𝜎 = 𝛼 = 𝛽 = 𝑢 = 𝑣 = 1 , then (2.1)  reduces to extended beta function 

(1.8).                    

                        𝐵1,1
(𝑝,1,1,1,1)

(𝛿1, 𝛿2) = 𝐵𝑝(𝛿1, 𝛿2) = 𝐵(𝛿1, 𝛿2; 𝑝).                          (2.7) 

 

3. Properties of 𝑩𝜶,𝜷
(𝒑,𝝁,𝒗,𝜸,𝝈)

(𝜹𝟏, 𝜹𝟐) 

In this section, we present certain properties of extension Beta function including 

summation formulas, integral representations and Mellin transform. 

Theorem 3.1. The following integral representations hold 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2)                                                                                                            
  

= 2 ∫ cos2𝛿1−1 𝜃

𝜋
2

0

sin2𝛿2−1 𝜃 𝐸𝛼,𝛽
𝛾,𝜎(−𝑝(sec2 𝜃)𝜇(𝑐𝑜𝑠𝑒𝑐2 𝜃)𝑣)𝑑𝜃,          (3.1) 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) 

= ∫
𝑢𝛿1−1

(1 + 𝑢)𝛿1+𝛿2

∞

0

 𝐸𝛼,𝛽
𝛾,𝜎

(−𝑝 
(1 + 𝑢)𝜇+𝑣

𝑢𝜇
) 𝑑𝑢,          (3.2) 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = 21−𝛿1−𝑦 ∫ (1 − 𝑢)𝛿1−1(1 − 𝑢)𝛿2−1
1

−1

 

                                                   

     × 𝐸𝛼,𝛽
𝛾,𝜎

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
) 𝑑𝑢 ,                 (3.3) 

                                                                                                         

   𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿2) > 0, 𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ+ , 𝜇, 𝑣 ∈ ℝ+.  

Proof. Let  𝑡 = cos2 𝜃   , 𝑡 =
𝑢

1+𝑢
, 𝑡 =

1+𝑢

2
 ,  respectively in equation (2.1), we 

obtain the above representations. 

Remark 3.1. If we take 𝛾 = 𝜎 = 1, in the integral representation of the Theorem 

(3.1), we obtain corresponding integrals for 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣)

(𝛿1, 𝛿2) in [9]. 
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If we take 𝛾 = 𝜎 = 1  𝑎𝑛𝑑 𝜇 = 𝑣 = 𝑚, in the integral representation of the 

Theorem (3.1), we obtain corresponding integrals for 𝐵𝛼,𝛽
(𝑝,𝑚)

(𝛿1, 𝛿2) in [12]. 

If we take 𝜎 = 1  𝑎𝑛𝑑  𝜇 = 𝑣 = 1, in the integral representation of the Theorem 

(3.1), we obtain corresponding integrals for 𝐵𝛼,𝛽
𝛾 (𝛿1, 𝛿2) in [1]. 

If we take 𝛾 = 1 , 𝜎 = 1, 𝛽 = 1, 𝜇 = 1 , 𝑣 = 1, in the integral representation of 

the Theorem (3.1), we obtain corresponding integrals for 𝐵𝛼(𝛿1, 𝛿2; 𝑝) in [15]. 

If we take 𝛾 = 1 , 𝜎 = 1, 𝛼 = 1, 𝛽 = 1, 𝜇 = 1 , 𝑣 = 1, in the integral representation 

of the Theorem (3.1), we obtain corresponding integrals for 𝐵(𝛿1, 𝛿2; 𝑝) in [5]. 
 
 

Theorem 3.2. The following summation formula for  𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) holds 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑘, 𝛿2 + 𝑛 − 𝑘), 𝑛 ∈ 𝑁0.  (3.4) 

Proof. We find from (2.1) that 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
1

0

(1 − 𝑡)𝛿2−1[𝑡 + (1 − 𝑡)]𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡 

                                 = 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 1, 𝛿2) + 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2 + 1).          (3.5)             

Repeating the same argument to the above two terms in (3.5), we obtain 

       𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 2, 𝛿2) 

                         +2𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 1, 𝛿2 + 1) + 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2 + 1).          (3.6)               

Continuing this process, by using mathematical induction we get the desired result 

(3.4). 

Theorem 3.3. The following summation formula for 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2)  holds 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∑
(𝛿2)𝑛

𝑛!

∞

𝑘=0

 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑛, 1)    𝑛 ∈ 𝑁0                           (3.7) 

   𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿2) > 0, 𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ+ , 𝜇, 𝑣 ∈ ℝ+.  

Proof. To prove the above result, by using the generalized binomial theorem 

defined as 
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(1 − 𝑡)−𝑦 = ∑(𝑦)𝑛

∞

𝑛=0

𝑡𝑛

𝑛!
              (|𝑡| < 1).                            (3.8) 

We fined  
  

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∫ ∑(𝛿2)𝑛

∞

𝑛=0

𝑡𝛿1𝑛−1

𝑛!

1

0

 𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡.                (3.9) 

 

Interchanging the order of integral and summation in the above equation and using 

(2.1), we get the desired result (3.7). 

Theorem 3.4. The following summation formula for 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2)  holds 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∑ 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 1, 𝛿2 + 1)

∞

𝑘=0

                  (3.10) 

   𝑅𝑒(𝑝) > 0 , 𝑅𝑒(𝛿1) > 0 , 𝑅𝑒(𝛿2) > 0, 𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ+ , 𝜇, 𝑣 ∈ ℝ+.  

Proof. Using the relation  

(1 − 𝑡)𝑦−1 = (1 − 𝑡)𝑦 ∑ 𝑡𝑛

∞

𝑛=0

              (|𝑡| < 1)                            (3.11) 

in (2.1), we obtain 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∫ (1 − 𝑡)𝛿2 ∑ 𝑡𝑛+𝛿1−1 𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡

∞

𝑛=0

1

0

,           

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∑ ∫(1 − 𝑡)𝛿2 𝑡𝑛+𝛿1−1 𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡,

1

0

∞

𝑛=0

           

which in view of (2.1), we get the desired result (3.10).  

Remark 3.2.  

In case  𝛾 = 1 , 𝜎 = 1,  of  (3.4) for 𝑛 = 1, then (3.7) and (3.10) reduces to 

corresponding results in [9]. 

In case  𝛾 = 1 , 𝜎 = 1 𝑎𝑛𝑑  𝜇 =  𝑣 = 𝑚    of  (3.4) for 𝑛 = 1, then (3.7) and (3.10) 

reduces to corresponding results in [12]. 

In case  𝜎 = 1 𝑎𝑛𝑑  𝜇 =  𝑣 = 1 of  (3.4) for 𝑛 = 1, then (3.7) and (3.10) reduces  

to corresponding results in [1]. 
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In case  𝛾 = 1 , 𝜎 = 1, 𝛽 = 1, 𝜇 = 1, 𝑣 = 1 of  (3.4) for 𝑛 = 1,  then (3.7) and 

(3.10) reduces to corresponding results in [15]. 

In case   𝛾 = 1 , 𝜎 = 1,    𝛼 = 1, 𝛽 = 1, 𝜇 = 1 , 𝑣 = 1 of  (3.4) for 𝑛 = 1, then 

(3.7) and (3.10) reduces to corresponding results in [5]. 

In case  𝜎 = 1    of  (3.4) for 𝑛 = 1, (3.7) and (3.10) ,we get the following  new 

results  

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2) = ∑
(𝛿2)𝑛

𝑛!

∞

𝑘=0

 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1 + 𝑛, 1)    𝑛 ∈ 𝑁0,              (3.12) 

and 

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2) = ∑ 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1 + 1, 𝛿2 + 1).

𝑛

𝑘=0

                                    (3.13) 

 

4. Beta distribution of 𝑩𝜶,𝜷
(𝒑,𝝁,𝒗,𝜸,𝝈)

(𝜹𝟏, 𝜹𝟐) 

We now define the beta distribution of (2.1), and obtain its mean, variance, 

moment generating function and cumulative distribution. 

For  𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2), the Beta distribution is given by 

𝑓(𝑡) = {

1

𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1,𝛿2)
 𝑡𝛿1−1 (1 − 𝑡)𝛿2−1  𝐸𝛼,𝛽

𝛾,𝜎
(−

𝑝

𝑡𝑢(1−𝑡)𝑣)

                        0  ,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

(0 < 𝑡 < 1),     (4.1) 

                

                             𝛿1, 𝛿2𝜖ℝ,    𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ+ ,    𝜇, 𝑣 ∈ ℝ+.  

For 𝑑 ∈ 𝑅, the  𝑑𝑡ℎ moment of a random variable 𝑋 defined as 
 

𝜌 = 𝐸(𝑋𝑑) =
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1 + 𝑑, 𝛿2)

𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2)

,                                                   (4.2) 

            𝛿1, 𝛿2 ∈ ℝ,   𝑝 ≥ 0,   𝛼, 𝛽, 𝛾, 𝜎 ∈ ℝ+ ,    𝜇, 𝑣 ∈ ℝ+.  

The variance of the distribution is defined by 

𝜎2 = 𝐸(𝑋2) − (𝐸(𝑋))
2
      

=
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2) + 𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1 + 2, 𝛿2) − {𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1 + 1, 𝛿2)}

2

{𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2)}

2 . (4.3) 
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The moment generating function of the distribution is defined as 

𝑀(𝑡) = ∑
𝑡𝑛

𝑛!

∞

𝑛=0

 𝐸(𝑋𝑛) =
1

𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2)

 ∑ 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑛, 𝛿2)

∞

𝑛=0

 
𝑡𝑛

𝑛!
.   (4.4) 

                             

The cumulative distribution is defined as    

𝑓(𝑧) =
𝐵𝑧,𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1 + 𝑑, 𝛿2)

𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2)

.                                                     (4.5) 

where   

𝐵𝑧,𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2) = ∫ 𝑡𝛿1−1
𝑧

0

(1 − 𝑡)𝛿2−1𝐸𝛼,𝛽
𝛾,𝜎

(−
𝑝

𝑡𝑢(1 − 𝑡)𝑣
) 𝑑𝑡,         (4.6) 

                                                      (𝑝 > 0,    − ∞ < 𝜇, 𝑣 < ∞),                                                                                                                                         
is the extended incomplete Beta function. 
 

5-Generalization of extended hypergeometric and confluent hypergeometric 

functions 

Here, we introduce a generalization of extended hypergeometric and confluent 

hypergeometric functions in terms of  𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2). 

The extended hypergeometric function is defined as 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) = ∑(𝛿1)𝑛  
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
,              (5.1) 

 

(𝑝 ≥ 0 ,   |𝜏| < 1 ,   𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 > 0 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

The confluent hypergeometric function is defined as 
   

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿2; 𝛿3; 𝜏) = ∑  
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
,                             (5.2) 

       

(𝑝 ≥ 0 ,   𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 > 0 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

Remark 5.1. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (5.1) and (5.2), we obtain 

corresponding results in [6]. 

In case   𝜎 = 𝛾 = 1  in (5.1) and (5.2), we obtain corresponding result in [9]. 

In case   𝜎 = 𝛾 = 1 and 𝜇 = 𝑣 = 1  in (5.1) and (5.2), we obtain corresponding 

result in [12]. 
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In case  𝜎 = 𝜇 = 𝑣 = 1  in (5.1) and (5.2), we obtain corresponding result in [2]. 

In case  𝜎 = 𝛽 = 𝜇 = 𝑣 = 1  in (5.1) and (5.2), we obtain corresponding result in 

[15]. 

In case   𝜎 = 1    in (5.1) and (5.2), we get the following new results 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3; 𝜏) = ∑(𝛿1)𝑛  
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿1 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
,                    (5.3) 

        

              (𝑝 ≥ 0 ,   |𝜏| < 1 ,   𝛼, 𝛽, 𝛾, 𝜇, 𝑣 > 0 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0) 

and 

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿2; 𝛿3; 𝜏) = ∑  
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

  
𝜏𝑛

𝑛!
,                                   (5.4) 

             

               (𝑝 ≥ 0 ,   𝛼, 𝛽, 𝛾, 𝜇, 𝑣 > 0 ,   𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 
 

 

6. Integral Representation and derivative formula for extended Gauss 

       hypergeometric functions 

Theorem 6.1. The following integral representations for the extended 

hypergeometric function 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) and confluent hypergeometric 

function Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿2; 𝛿3; 𝜏) holds 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) =
1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1(1 − 𝜏𝑡)−𝛿1𝐸𝛼,𝛽
𝛾,𝜎

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
),                  (6.1)

1

−1

 

 

  (𝑝 ∈ ℝ0
+, 𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 ∈ ℝ+ ;  𝑎𝑛𝑑   𝑎𝑟𝑔|1 − 𝜏| < 𝜋, 𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿2; 𝛿3; 𝜏) =
1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

× ∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1𝑒𝑧𝑡
1

−1

𝐸𝛼,𝛽
𝛾,𝜎

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
),       (6.2) 

     (𝑝 ∈ ℝ0
+, 𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 ∈ ℝ+ ;     𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

Proof. By using the definition of 𝐵𝑧,𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝑥, 𝑦) in (2.1) into (5.1) and interchan- 

ging the order of integration and summation, which is verified under the condition 

here, we have 
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𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) =
1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 ∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1

1

−1

 

× 𝐸𝛼,𝛽
𝛾,𝜎

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
) ∑(𝛿1)𝑛

∞

𝑛=0

(𝜏𝑡)𝑛

𝑛!
.               (6.3) 

Using the binomial theorem in (3.11) to the summation formula in (6.3), we get the 

desired result (6.1). Similarly, we can obtain (6.2). 

Remark 6.1. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (6.1) and (6.2), we obtain the 

corresponding result in [6]. 

In case  𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (6.1) and (6.2), we obtain the corresponding 

result in [15]. 

In case 𝜎 = 𝜇 = 𝑣 = 1 in (6.1) and (6.2), we obtain the corresponding result in [2]. 

In case  𝜎 = 𝛾 = 1 and 𝜇 = 𝑣 = 𝑚 in (6.1) and (6.2), we obtain the corresponding 

result in [12].   

In case  𝜎 = 𝛾 = 1 in (6.1) and (6.2), we obtain the corresponding result in [9]. 

In case   𝜎 = 1    in (6.1) and (6.2), we get the following new results 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3; 𝜏) =
1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1(1 − 𝜏𝑡)−𝛿1

1

−1

𝐸𝛼,𝛽
𝛾

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
),                  (6.4) 

   

        (𝑝 ∈ ℝ0
+, 𝛼, 𝛽, 𝛾, 𝜇, 𝑣 ∈ ℝ+;  𝑎𝑛𝑑   𝑎𝑟𝑔|1 − 𝜏| < 𝜋, 𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0), 

and 

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿2; 𝛿3; 𝜏) =
1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

× ∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1𝑒𝑧𝑡
1

−1

𝐸𝛼,𝛽
𝛾

(−𝑝 
2𝜇+𝑣

(1 − 𝑢)𝜇(1 − 𝑢)𝑣
),       (6.5) 

           

   (𝑝 ∈ ℝ0
+, 𝛼, 𝛽, 𝛾, 𝜇, 𝑣 ∈ ℝ+ ;     𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

Theorem 6.2. The following derivative formula for extended Gauss hypergeometric 

and confluent hypergeometric function holds: 

𝑑𝑛

𝑑𝜏𝑛
{𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2, 𝛿3; 𝜏)} =

(𝛿1)𝑛(𝛿2)𝑛

(𝛿3)𝑛
 

                                             × 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑛, 𝛿2 + 𝑛; 𝛿3 + 𝑛; 𝜏),                (6.6) 
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and 

𝑑𝑛

𝑑𝜏𝑛
{Φ𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2; 𝛿3; 𝜏)} =

(𝛿2)𝑛

(𝛿3)𝑛
Φ𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2 + 𝑛, 𝛿3 + 𝑛; 𝜏),                   (6.7) 

                                                   

where         (𝑝 ≥ 0 , 𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 ∈ ℝ+ ;     𝑅𝑒(𝛿3) > 𝑅𝑒(𝛿2) > 0). 

Proof. Differentiating (5.1) and (5.2) with respect to 𝜏 and using the following 

formula 

           𝐵(𝛿2, 𝛿3 − 𝛿2) =
𝛿3

𝛿2
 𝐵(𝛿2 + 1, 𝛿3 − 𝛿2)  𝑎𝑛𝑑  (𝛿)𝑛 = 𝛿(𝛿 + 1)𝑛.         (6.8) 

we obtain the derivative formulas (6.6) and (6.7) for  𝑛 = 1 . Easily applying the 

same process, we get the desired results (6.6) and (6.7). 

Remark 6.2. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (6.6) and (6.7), we obtain 

the corresponding result in [6]. 

In case 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (6.6) and (6.7), we obtain the corresponding 

result in [15]. 

In case 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (6.6) and (6.7), we obtain the corresponding 

result in [2]. 

In case  𝜎 = 𝛾 = 1 and 𝜇 = 𝑣 = 𝑚  in (6.6) and (6.7), we obtain the corresponding 

result in [12]. 

In case  𝜎 = 𝛾 = 1 in (6.6) and (6.7), we obtain the corresponding result in [9]. 

In case   𝜎 = 1    in (6.6) and (6.7), we get the following new results 

𝑑𝑛

𝑑𝜏𝑛
{𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿1, 𝛿2, 𝛿3; 𝜏)} =

(𝛿1)𝑛(𝛿2)𝑛

(𝛿3)𝑛
 

                                                × 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1 + 𝑛, 𝛿2 + 𝑛; 𝛿3 + 𝑛; 𝜏),                (6.9) 

and 

𝑑𝑛

𝑑𝜏𝑛
{Φ𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿2; 𝛿3; 𝜏)} =

(𝛿2)𝑛

(𝛿3)𝑛
 Φ𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿2 + 𝑛, 𝛿3 + 𝑛; 𝜏).                     (6.10) 

7. Transformation and summation formulas 

Theorem 7.1. The following formulas for the extended hypergeometric and con- 

fluent hypergeometric function hold 
 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) = (1 − 𝜏)−𝛿1  𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3;
𝜏

1−𝜏
),                    (7.1) 
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𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 1 −
1

𝜏
) = 𝜏𝛿1  𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2, 𝛿3; 1 − 𝜏),                      (7.2) 

 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3;
𝜏

1+𝜏
) = (1 + 𝜏)𝛿1 𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿1, 𝛿2, 𝛿3; −𝜏),                   (7.3) 

 

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿2; 𝛿3; 𝜏) = 𝑒𝜏 Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿3 − 𝛿2; 𝛿3; −𝜏),                                        (7.4)                          

Proof. Replacing 𝑡 by 1 − 𝑡 and substituting 

                      (1 − 𝜏(1 − 𝑡))
−𝛿1

= (1 − 𝜏)−𝛿1 (1 +
𝜏

1−𝜏
 𝑡)

−𝛿1

, 

in (6.1), we obtain 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) =
(1 − 𝜏)−𝛿1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

            × ∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1 (1 +
𝜏

1−𝜏
 𝑡)

−𝛿11

−1
𝐸𝛼,𝛽

𝛾,𝜎
(−𝑝 

2𝜇+𝑣

(1−𝑢)𝜇(1−𝑢)𝑣),       (7.5)            

=
(1 − 𝜏)−𝛿1

𝐵(𝛿2, 𝛿3 − 𝛿2)
 

            × ∫ 𝑡𝛿2−1(1 − 𝑡)𝛿3−𝛿2−1 (1 −
−𝜏

1−𝜏
 𝑡)

−𝛿11

−1
𝐸𝛼,𝛽

𝛾,𝜎
(−𝑝 

2𝜇+𝑣

(1−𝑢)𝜇(1−𝑢)𝑣).       (7.6)  

In view of (6.1), we get the desired result (7.1). 

Replacing  𝜏   by  1 −
1

𝜏
  and 

𝜏

1+𝜏
 in (7.1) yield (7.2) and (7.3) respectively.  

Similarly as (7.1), we can establish (7.4).   

Remark 7.1. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (7.1) and (7.4), we obtain  

the corresponding result in [6]. 

In case  𝜎 = 𝜇 = 𝑣 = 1   in (7.1) to (7.4), we obtain the corresponding result in 

[2]. 

In case  𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1   in (7.1) to (7.4), we obtain the corresponding 

result in [15]. 

In case  𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1   in (7.1) to (7.4), we obtain the corresponding 

result in [6]. 

In case  𝜎 = 𝛾 = 1 and 𝜇 = 𝑣 = 𝑚 in (7.1) to (7.4), we obtain the corresponding 

result in [12]. 

In case  𝜎 = 𝛾 = 1  in (7.1) to (7.4), we obtain the corresponding result in [9]. 

In case   𝜎 = 1    in (7.1) to (7.4), we get the following new results 
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𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3; 𝜏) = (1 − 𝜏)−𝛿1  𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3;
𝜏

1−𝜏
),                         (7.7) 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3; 1 −
1

𝜏
) = 𝜏𝛿1  𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿1, 𝛿2, 𝛿3; 1 − 𝜏),                           (7.8) 

𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1, 𝛿2, 𝛿3;
𝜏

1+𝜏
) = (1 + 𝜏)𝛿1 𝐹𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾)
(𝛿1, 𝛿2, 𝛿3; −𝜏),                        (7.9) 

  and 

Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿2; 𝛿3; 𝜏) = 𝑒𝜏 Φ𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿3 − 𝛿2; 𝛿3; −𝜏),                                       (7.10) 

 

Theorem 7.2. The following summation formula hold   

          𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 1) =
𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2,𝛿3−𝛿1−𝛿2)

𝐵(𝛿2,𝛿3−𝛿2)
,                                   (7.11) 

            (𝑝 ∈ ℝ0
+, 𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 ∈ ℝ+ ;     𝑅𝑒(𝛿3 − 𝛿1 − 𝛿2) > 0). 

Proof. Putting  𝜏 = 1 in (6.1) and using the definition (2.1), we obtain the desir-ed 

result (7.11). 

Remark 7.2. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 , with  𝑝 = 0 in (7.11), we 

obtain the Gauss summation formula 𝐹12
⬚  

            𝐹12
⬚ (𝛿1, 𝛿2, 𝛿3; 1) =

Γ(𝛿3) Γ(𝛿3−𝛿1−𝛿2)

Γ(𝛿3−𝛿1)Γ(𝛿3−𝛿2)
 ,  (𝑅𝑒(𝛿3 − 𝛿1 − 𝛿2) > 0) .       (7.12) 

 

8. A generating function for 𝑭𝜶,𝜷
(𝒑,𝝁,𝒗,𝜸,𝝈)

(𝜹𝟏, 𝜹𝟐, 𝜹𝟑; 𝝉) 

Theorem 8.1. The following generating function for 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1, 𝛿2, 𝛿3; 𝜏) hold 

∑(𝛿1)𝑛 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑘, 𝛿2, 𝛿3; 𝜏)

∞

𝑛=𝑘

  
𝜏𝑘

𝑘!
 

  

                                    = (1 − 𝑡)−𝛿1𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿1 + 𝑘, 𝛿2, 𝛿3;
𝜏

1−𝑡
),                  (8.1) 

 

             (𝑝 ∈ ℝ0
+ ,   |𝑡| < 1 ,   𝛼, 𝛽, 𝛾, 𝜎, 𝜇, 𝑣 ∈ ℝ+). 

Proof. Let ∆ be the left hand side (L.H.S) of (8.1). From (5.1), we have 

∆= ∑(𝛿1)𝑘 

∞

𝑘=0

 (∑
(𝛿1 + 𝑘)𝑛 𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)

∞

𝑛=0

 
𝜏𝑛

𝑛!
) 

𝑡𝑘

𝑘!
                  (8.2) 



 

84 
 

      = ∑(𝛿1)𝑘 

∞

𝑘=0

 𝐵𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾,𝜎)

(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)
 (∑(𝛿1 + 𝑘)𝑛  

𝑡𝑘

𝑘!

∞

𝑛=0

 ) 
𝜏𝑛

𝑛!
 

 

      = (1 − 𝑡)−𝛿1 ∑(𝛿1)𝑘 

∞

𝑘=0

 
 𝐵𝛼,𝛽

(𝑝,𝜇,𝑣,𝛾,𝜎)
(𝛿2 + 𝑛, 𝛿3 − 𝛿2)

𝐵(𝛿2, 𝛿3 − 𝛿2)
  (

𝜏

1 − 𝑡
)

𝑛 1

𝑛!
.             (8.3) 

Finally by using (5.1) in (8.3), we get the right side of (8.1). 

Remark 8.1. In case  𝛼 = 𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1 in (8.1), we obtain the corresp- 

onding result in [6]. 

In case   𝛽 = 𝜎 = 𝛾 = 𝜇 = 𝑣 = 1    in (8.1), we obtain the corresponding result in 

[15]. 

In case   𝜎 = 𝜇 = 𝑣 = 1  in (8.1), we obtain the corresponding result in [2]. 

In case   𝜎 = 𝛾 = 1    in (8.1), we obtain the corresponding result in [9]. 

In case   𝜎 = 𝛾 = 1 and 𝜇 = 𝑣 = 𝑚   in (8.1), we obtain the corresponding result 

in [12]. 

In case   𝜎 = 1    in (8.1), we get the following new result 
 

∑(𝛿1)𝑛 𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1 + 𝑘, 𝛿2, 𝛿3; 𝜏)

∞

𝑛=𝑘

  
𝜏𝑘

𝑘!
 

                                         = (1 − 𝑡)−𝛿1𝐹𝛼,𝛽
(𝑝,𝜇,𝑣,𝛾)

(𝛿1 + 𝑘, 𝛿2, 𝛿3;
𝜏

1−𝑡
).                (8.4) 
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