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Abstract 

In this study, the mathematical stability of EEG signal models represented by the 

integral equation during an epileptic seizure is investigated. The modelling of the EEG 

signals should be done with utmost accuracy to understand the actual nature of the 

brain dynamics and to enhance seizure prediction approaches. We investigate the 

stability of such models by applying Lyapunov's stability theorem and show that 

stability is powerfully dependent on parameters such as seizure duration and intensity, 

along with neural connectivity. We demonstrate that some of the parameter regimes 

yield stable behaviour, while others give rise to instability, making EEG interpretation 

complicated during epileptic seizures. By comparing integral equation-based models 

with current approaches, their advantages are highlighted in capturing the transient 

dynamics of epileptic activity. This work focuses on developing solid mathematical 

frameworks that will allow for real-time EEG monitoring. It contributes to the wider 

knowledge on the dynamics of seizures in the brain and will have practical implications 

for the development of neurological diagnostic and therapeutic tools.  

 

Key words: Asymptotically stable, EEG signals, Integral equation, Lyapunov's 

stability. 
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1. Introduction 

Epilepsy is a neurological disorder that involves several disorders characterized by 

abnormal electrical discharges in the brain [1]. The disorder results from excessive 

and unpredictable discharge of specific groups of neurons; the process has been 

termed a miniature brainstorm. Such electrical storms may cause a range of 

symptoms, from sudden, brief muscle contractions to generalized convulsions [2]. 

Some people also become unconscious during such seizures; it may last from a short 

duration to a long one, and the intensity may vary. Epilepsy may be confined to one 

area of the brain or may be more generalized to involve the whole brain. Depending  

 

on which part of the brain has been involved, symptoms may range from changes in 

movement, sensation, or emotions, and state of consciousness, or even in behaviours, 

and are collectively referred to as epileptic seizures. Such complexities are important 

to understand for the elaboration of effective treatment and management strategies in 

patients suffering from this condition [3]. 

Electroencephalography, or EEG, is a method of recording electrical signals generated 

by the brain. it is essential in epilepsy diagnosis, documenting evidence of seizure 

disorders and helping classify various types of seizures [4]. Generally, EEG is used in 

cases observed with abnormal brain activities occurring during epileptically events. 

This process involves attaching electrodes to the scalp, which allows for a non-invasive 

retrieval of signals from the brain. The particular patterns of activity recorded and the 

source within the brain will give the physician important information about which 

medication works best for certain types of epilepsy [5]. If seizures are not controllable 

by medication, then patients can resort to surgery, which removes the pieces of brain 

tissue where the seizures originate. Because of this, EEG becomes critical in 

demarcating the precise locations of such damaged tissues for appropriate 

interventions, therefore dramatically enhancing outcomes for the patients [6]. 
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Fuzzy Topographic Topological Mapping (FTTM) represents an innovative approach 

in efforts to solve the neuromagnetic inverse problem. This model consists of four 

elements, which are homoeomorphic from each other: magnetic contour plane (MC),  

 

base magnetic plane (BM), fuzzy magnetic field (FM), and topographic magnetic field 

(TM). It has been generalized for this model in the literature. There has also been an 

application of a similar concept of topological mapping for navigation and localization 

to support visually impaired individuals. As it follows in the paper by [7], a new 

technique was proposed for mapping high-dimensional EEG signals into MC low-

dimensional space. In general, the whole scheme of the new model incorporates steps 

as follows. First, there is a need for the flattening of the EEG-a process for the 

conversion of three-dimensional data into two-dimensional format by strategically 

placing sensors on a patient's head relative to the EEG signals. This method of 

flattening will be able to preserve both the magnitude and orientation of the surface 

effectively, as shown in Fig.1. The second step is the processing of EEG data using 

Fuzzy C-Means (FCM). 

The application of mathematical modelling was vital in the analysis of these EEG 

signals, as this provides a systematic interpretation of the complex electrical activities 

taking place in the human brain during the event of an epileptic seizure. Barja 2024 , 

EEG sensor  

MC  

Figure1. EEG Projection 
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 resorts to a different way of understanding and modelling these EEG signals by 

formulating integral equations. It captures the complex dynamics of brain activity at 

critical seizure episodes and provides insight into the mechanisms of seizure 

propagation. Further, Barja reformulated traditional models to outline the potential that 

integral equations may hold for improving seizure detection and classification [9]. This 

innovative perspective opens a new dimension, where not only is there a mathematical 

framework established for the interpretation of EEG data, but new perspectives toward 

diagnosis and therapeutic strategy are opened. These results confirm that sophisticated 

mathematical modelling plays an important role in neuroscience, with clinical 

implications. This will help in the better understanding of epilepsy and how it affects 

the functions of the brain. 

 

2. Related Work and Preliminary Considerations 

In this section, we will explore the existing literature relevant to our study, highlighting 

key studies and findings that inform our work while also presenting fundamental 

definitions and essential theorems that underpin the concepts discussed. By examining 

prior study and establishing a clear theoretical framework, we aim to provide a 

comprehensive context for our study and clarify the significance of our contributions 

to the field. Furthermore, as mentioned in the introduction, Barja 2024 developed a 

new model to describe EEG signals during an epileptic seizure as an integral equation 

of the following form: 

𝜙(𝑡) = ∫ 𝐾(𝜏) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

                (2.1) 

The equation (2.1), with its kernel function 𝐾(𝜏), pre-seizure signal 𝜐(𝑡 − 𝜏), and 

seizure function 𝜇(𝜏), served as a key tool for unlocking the connection between the 

observed EEG signal 𝜙(𝑡) during a seizure and the underlying brain activity 𝜇(𝜏). By 

solving (2.1), we could estimate the seizure activity using the measured EEG signal. 

This breakthrough had profound implications, allowing us to pinpoint and localize  
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the source of seizures within the brain, as demonstrated in Fig 2.  

 

 

 

 

 

 

 

 

 

Additionally, the prior integral equation (2.1) was implemented in MATLAB, 

yielding unambiguous results in the referenced study as shown in Fig 3.  

 

 

 

 

 

 

 

 

 

2.1 Definition [10]: Let Υ(𝑡) represent the state of the system at time 𝑡. The evolution 

of the system is described by a set of equations, which can be written in two forms: 

1. Continuous-Time Dynamic System: 
𝑑

𝑑𝑡
Υ(𝑡) = 𝜏(Υ(𝑡), 𝑡), where 𝜏: ℝ𝑛 × ℝ ⟶ ℝ𝑛  

is a continuous function defining the dynamics of the system. 

2. Discrete-Time Dynamic System: Υ(𝑘 + 1) = 𝜑(Υ(𝑘), 𝑘), where 𝜑: ℝ𝑛 × ℤ ⟶

ℝ𝑛  is a function that defines the state transition at discrete time steps 𝑘. 

 

 

Figure2. Brain activity captured by EEG during an epileptic episode 

𝜙
( 𝑡

)  

Figure3. Integral Equation Mapping of EEG 
Signals During a Seizure 
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2.2 Definition [11]: A solution Υ(𝑡) of a nonlinear dynamical system described by an 

integral equation is said to be Lyapunov stable if, for any 𝜀 > 0 there exists a 𝛿 > 0 

such that, if the initial condition Υ(0) is within 𝛿 of an equilibrium point Υ𝑒, the 

solution Υ(𝑡) remains within 𝜀 of Υ𝑒 for all 𝑡 ≥ 0. Mathematically, this can be 

expressed as: 

∀𝑡 ≥ 0 ; ‖Υ(0) − Υ𝑒‖ < 𝛿 ⟹ ‖Υ(𝑡) − Υ𝑒‖ < 𝜀 

2.3 Definition [12]: Suppose the following integral equation: 

Υ(𝑡) = Υ0 + ∫ 𝜏(Υ(𝑠), 𝑠)𝑑𝑠

𝑡

0

, 

where 𝜏 is a continuous function, if there exists a continuously differentiable function 

𝐿: ℝ𝑛 ⟶ ℝ ((known as the Lyapunov function) such that: 

1. Positive Definite: 𝐿(Υ) > 0 for all Υ ≠ Υ𝑒 and 𝐿(Υ𝑒) = 0. 

2. Negative Definite Derivative: The time derivative 𝐿̇ = ∇𝐿 ∙ 𝜏(Υ(𝑡), 𝑡) < 0 for all 

Υ in a neighbourhood of Υ𝑒. 

Then, the equilibrium point Υ𝑒 is globally asymptotically stable. This means that not  

only is the system stable, but all trajectories will eventually converge to Υ𝑒 as time 

approaches infinity. 

2.4 Definition [13]: A steady-state solution is a solution to a system (in the case of 

an integral equation) that does not change over time, In mathematical terms, a 

steady-state solution 𝜑0(𝑡) satisfies the integral equation ∫ 𝐾(𝑡, 𝑥)𝜈(𝑥)𝑑𝑥 = 𝜑(𝑡)
𝛽

𝛼
 

in such a way that it remains constant or converges to a fixed value as 𝛼 ⟶ 𝛽. The 

solution 𝜑0(𝑡) satisfies 𝜑0(𝑡) = 𝜑(𝑡) for all 𝑡. 

2.5 Definition [14]: Let 𝐾(𝑡, 𝑠) be a kernel function on region 𝑅. We say that 𝐾 

satisfies a Lipschitz condition with respect to the second variable (𝑠) if there exists a 

positive constant 𝐿 such that: |𝐾(𝑡, 𝑠1) − 𝐾(𝑡, 𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2| for all (𝑡, 𝑠1) and 

(𝑡, 𝑠2) in 𝑅. 
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2.6 Banach's Fixed-Point Theorem [15]: Let (𝑋, 𝑑) be a complete metric space, and 

let 𝑇: 𝑋 ⟶ 𝑋 be a contraction mapping, meaning there exists a constant 0 ≤ 𝑘 < 1 

such that for all 𝑥, 𝑦 ∈ 𝑋: 𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑘 ⋅ 𝑑(𝑥, 𝑦). Then, the following 

statements hold: 

1. Existence of a Fixed Point: There exists a unique point 𝑥∗ ∈ 𝑋 such that 

𝑇(𝑥∗) = 𝑥∗. 

2. Convergence to the Fixed Point: For any point 𝑥0 ∈ 𝑋, the sequence defined by 

𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to the fixed point 𝑥∗ as 𝑛 ⟶ ∞. 

 

3. Methods and Results 

 

The objective of this study is to analyse the stability of integral equation 2.1 models 

that describe EEG signals during epileptic seizures. The following methodology was 

adopted to achieve this: 

1. Model Definition: We define a generalized integral equation to model the EEG 

signal during epileptic seizures. This equation takes the form of an integral equation 

system where the EEG signal 𝜙(𝑡) depends on a kernel function 𝐾(𝜏, 𝜙(𝑡)), the pre-

seizure signal 𝜐(𝑡), and the seizure dynamics 𝜇(𝜏). 

2. Assumptions on System Properties: The kernel function 𝐾(𝜏, 𝜙(𝑡)), as well as the 

functions 𝜐(𝑡) and 𝜇(𝜏), are assumed to be continuous and, in some cases, satisfy 

properties such as boundedness and differentiability. These assumptions allow us to 

explore the stability of the solution 𝜙(𝑡). 

3. Linearization and Perturbation Analysis: To analyse stability, we linearize the 

nonlinear terms of the integral equation 2.1 around a steady-state solution. We then 

introduce small perturbations into the system and observe how the solution responds, 

focusing on Lyapunov and asymptotic stability. 
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4. Proof of Stability: We derive theorems that provide sufficient conditions for the 

existence, uniqueness, boundedness, and stability of the solution to the integral 

equation 2. 1.. 

Following the outlined methodology, we present the main results of our study in the 

form of several key theorems, each accompanied by a rigorous mathematical proof to 

establish the stability properties of the integral equation 2.1 model.  

3.1 Theorem: Let 𝐾(𝜏, 𝜙(𝑡)) be continuous with respect to both 𝜏 and 𝜙(𝑡), and let 

𝜐(𝑡) and 𝜇(𝜏) be continuous and bounded functions. Then there exists a unique 

continuous solution 𝜙(𝑡) to the integral equation: 

𝜙(𝑡) = ∫ 𝐾(𝜏, 𝜙(𝑡)) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

 

Proof. 

Assume that 𝐾(𝜏, 𝜙(𝑡)) is continuous with respect to both 𝜏 and EEG signals 𝜙(𝑡), 

and satisfies a Lipschitz condition with respect to 𝜙(𝑡). 

we will define the integral operator 𝛵 for any 𝜙(𝑡) during epileptic seizure as: 

𝛵[𝜙](𝑡) = ∫ 𝐾(𝜏, 𝜙(𝑡)) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

 

Let 𝜙1(𝑡) and 𝜙2(𝑡) be two continuous functions. We need to show that 𝛵 is a 

contraction mapping, i.e., for some constant 𝐿 < 1: ‖𝛵[𝜙1] − 𝛵[𝜙2]‖ ≤ 𝐿‖𝜙1 − 𝜙2 ‖ 

Now 𝛵[𝜙1](𝑡) − 𝛵[𝜙2](𝑡) = ∫[𝐾(𝜏, 𝜙1(𝑡)) − 𝐾(𝜏, 𝜙2(𝑡))] 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

 

Since 𝐾(𝜏, 𝜙(𝑡)) is Lipschitz continuous with respect to 𝜙(𝑡), there exists a constant 

𝐿𝐾 > 0 such that: |𝐾(𝜏, 𝜙1(𝑡)) − 𝐾(𝜏, 𝜙2(𝑡))| ≤ 𝐿𝐾|𝜙1(𝑡) − 𝜙2 (𝑡)|. Thus, we have 

|𝛵[𝜙1](𝑡) − 𝛵[𝜙2](𝑡)|

≤ 𝐿𝐾|𝜙1(𝑡) − 𝜙2(𝑡)| ∫|𝜐(𝑡 − 𝜏)||𝜇(𝜏)|𝑑𝜏 .

∞

𝑡

 hence 𝛵 is a contraction. 
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By assumption, there exist constants 𝑀𝜐and 𝑀𝜇  such that |𝜐(𝑡)| ≤ 𝑀𝜐  and |𝜇(𝜏)| ≤

𝑀𝜇  for all 𝑡 and 𝜏. Therefore, the integral can be bounded as follows: 

∫|𝜐(𝑡 − 𝜏)||𝜇(𝜏)|𝑑𝜏 

∞

𝑡

≤ 𝑀𝜐𝑀𝜇 ∫ 𝑑𝜏 

∞

𝑡

 

Since the integral ∫ 𝑑𝜏 converges for appropriate choices of 𝜐(𝑡) and 𝜇(𝜏)

∞

𝑡

, we obtain: 

|𝛵[𝜙1](𝑡) − 𝛵[𝜙2](𝑡)| ≤ 𝐿𝐾𝑀𝜐𝑀𝜇|𝜙1(𝑡) − 𝜙2(𝑡)| 

Thus, the operator 𝛵 satisfies the contraction condition with 𝐿 = 𝐿𝐾𝑀𝜐𝑀𝜇 . If 𝐿 < 1, 

and since 𝛵 is a contraction mapping, 2.4 theorem guarantees the existence of a unique 

fixed point 𝜙(𝑡) that satisfies: 𝜙(𝑡) = 𝛵[𝜙](𝑡). This fixed point is unique solution to 

the original integral equation 2.1 for EEG signals during the seizure, as required.  

 

3.2 Theorem: let 𝜐(𝑡) and 𝜇(𝜏) be continuous and bounded functions and let the 

kernel function 𝐾(𝜏, 𝜙(𝑡)) satisfy a Lipschitz condition with respect to EEG signals 

𝜙(𝑡). If 𝐿𝐾 is sufficiently small, then the solution 𝜙(𝑡) of the integral equation 2.1 is 

Lyapunov stable. 

Proof. 

Consider two solutions 𝜙1(𝑡) and 𝜙2(𝑡) corresponding to slightly different initial 

conditions. Since 𝐾(𝜏, 𝜙(𝑡)) satisfy a Lipschitz condition with respect to EEG signals 

𝜙(𝑡), then there exists a constant 𝐿𝐾 > 0 such that for all 𝑡; |𝐾(𝜏, 𝜙1(𝑡)) −

𝐾(𝜏, 𝜙2(𝑡))| ≤ 𝐿𝐾|𝜙1(𝑡) − 𝜙2(𝑡)| 

Now, |𝜙1(𝑡) − 𝜙2 (𝑡)| = |∫[𝐾(𝜏, 𝜙1(𝑡)) − 𝐾(𝜏, 𝜙2(𝑡))] 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

| 
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≤ 𝐿𝐾 ∫|𝜙1(𝑡)

∞

𝑡

− 𝜙2(𝑡)| |𝜐(𝑡

− 𝜏)||𝜇(𝜏)|𝑑𝜏  (by Using the Lipschitz condition on 𝐾(𝜏, 𝜙(𝑡))) 

Since 𝐿𝐾 is small and 𝜐(𝑡), 𝜇(𝜏) are bounded, this implies that: 

|𝜙1(𝑡) − 𝜙2 (𝑡)| ≤ 𝐶|𝜙1(𝑡) − 𝜙2 (𝑡)|, where 𝐶 < 1. Consequently, the solution is 

stable in the sense of Lyapunov, as required. 

3.3 Theorem: If the kernel function 𝐾(𝜏, 𝜙(𝑡)) is continuously differentiable with 

respect to the EEG signals 𝜙(𝑡) during an epileptic seizure and satisfies the condition: 
𝜕𝐾(𝜏,𝜙(𝑡) )

𝜕𝜙(𝑡)
≤ −𝑐 < 0, then the solution 𝜙(𝑡) of the integral equation 2.1 is 

asymptotically stable during the epileptic seizure. 

Proof. 

Consider a small perturbation 𝛿𝜙(𝑡) = 𝜙(𝑡) − 𝜙0(𝑡), where 𝜙0(𝑡) is the steady-state 
solution. 

Linearize the integral equation around 𝜙0(𝑡), we obtain 

𝛿𝜙(𝑡) ≈ ∫
𝜕𝐾(𝜏, 𝜙0(𝑡))

𝜕𝜙(𝑡)
𝛿𝜙(𝑡) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

 

Since
𝜕𝐾(𝜏, 𝜙(𝑡))

𝜕𝜙(𝑡)
≤ −𝑐 < 0, then we have 𝛿𝜙(𝑡)

≤ −𝑐 ∫ |𝛿𝜙(𝑡)| |𝜐(𝑡 − 𝜏)||𝜇(𝜏)|𝑑𝜏 

∞

𝑡

 

This implies that 𝛿𝜙(𝑡) decays exponentially over time, leading to asymptotic stability, 
as required. 

 

 

 



 

13 
 

 

3.4 Theorem: If the kernel function 𝐾(𝜏, 𝜙(𝑡)), the pre-seizure signal 𝜐(𝑡), and the 

seizure dynamics 𝜇(𝜏) are continuous and bounded, then the solution 𝜙(𝑡) is 

bounded for all 𝑡 during the epileptic seizure. 

Proof. 

Since 𝐾(𝜏, 𝜙(𝑡)), 𝜐(𝑡), and 𝜇(𝜏) are continuous and bounded, we have 

|𝐾(𝜏, 𝜙(𝑡))| ≤ 𝑀𝐾 , |𝜐(𝑡)| ≤ 𝑀𝜐, and |𝜇(𝜏) | ≤ 𝑀𝜇 for all 𝑡 and 𝜏. 

For all 𝑡, we have |𝜙(𝑡)| = |∫ 𝐾(𝜏, 𝜙(𝑡)) 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

|

≤ 𝑀𝐾𝑀𝜐𝑀𝜇 ∫ 𝑑𝜏 

∞

𝑡

(by assumption) 

Since the integral ∫ 𝑑𝜏 
∞

𝑡
converges over a finite interval, it follows that |𝜙(𝑡)| is 

bounded for all 𝑡 during the epileptic seizure, as required. 

 

3.5 Theorem: Suppose that 𝐾(𝜏, 𝜙(𝑡)) is continuous and satisfied a Lipschitz 

condition during an epileptic seizure. Then the solution 𝜙(𝑡) of integral equation 2.1 

is continuous with respect to small changes in the initial conditions during the epileptic 

seizure. 

Proof. 

Assume that 𝜙1(𝑡) and 𝜙2(𝑡) are solutions of 2.1 equation with slightly different initial 

conditions 𝜙1(𝑡0) and 𝜙2(𝑡0) during the seizure. We will show that the difference 

between the solutions, |𝜙1(𝑡) − 𝜙2 (𝑡)|, remains small for all 𝑡, implying continuity 

with respect to the initial conditions. Now we have: 

|𝜙1(𝑡) − 𝜙2(𝑡)| = |∫[𝐾(𝜏, 𝜙1(𝑡)) − 𝐾(𝜏, 𝜙2 (𝑡))] 𝜐(𝑡 − 𝜏)𝜇(𝜏)𝑑𝜏 

∞

𝑡

| 

Since 𝐾(𝜏, 𝜙(𝑡)) satisfies a Lipschitz condition with respect to the second variable, 

i.e., there exists a constant 𝐿𝐾 > 0 such that: 
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|𝜙1(𝑡) − 𝜙2(𝑡)| ≤ 𝐿𝐾 ∫|𝜙1(𝑡) − 𝜙2(𝑡)| |𝜐(𝑡 − 𝜏)||𝜇(𝜏)|𝑑𝜏 

∞

𝑡

 

≤ 𝐿𝐾𝑀𝜐𝑀𝜇 ∫|𝜙1(𝑡) − 𝜙2(𝑡)| 𝑑𝜏 

∞

𝑡

by 2.3 theorem 

 

Now, assume that the difference |𝜙1(𝑡0) − 𝜙2(𝑡0)| is small at the initial time 𝑡0 . 

Therefore, the integral will remain small if |𝜙1(𝑡) − 𝜙2(𝑡)| does not grow too quickly 

over time. By applying Gronwall’s inequality, we can deduce that the difference 

between the two solutions remains bounded and grows at most exponentially with time. 

However, since the initial difference is small, the solutions 𝜙1(𝑡) and 𝜙2(𝑡) will 

remain close for all 𝑡 during the seizure. Thus, we conclude that small changes in the 

initial conditions of 𝜙(𝑡) lead to small changes in the solution 𝜙(𝑡) for all 𝑡, proving 

that the solution is continuous with respect to the initial conditions during the seizure, 

as required. 

4. Discussion 

The application of Lyapunov's stability theorem in this study provides a robust 

framework for analysing EEG signals during epileptic seizures. This theorem 

highlights the importance of understanding how small perturbations in initial 

conditions can lead to significant changes in model behaviour. Although this is a 

common assumption in stability analysis, it may not hold in highly chaotic systems like 

the brain, where minor variations can result in unpredictable outcomes. Integral 

equation-based models have been shown to offer significant advantages over 

traditional approaches in EEG interpretation. These models capture the transient 

dynamics of epileptic activity more effectively, allowing for a better understanding of 

the underlying brain mechanisms. However, further exploration of the parameter space, 

particularly regarding neural connectivity and seizure intensity, is necessary. This need 

for exploration suggests that our current understanding may be incomplete, potentially 

limiting the applicability of our findings to real-world scenarios. 
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While this study presents promising theoretical insights, the requirement for a 

continuously differentiable Lyapunov function to establish global asymptotic stability 

raises practical challenges. Finding such a function can be difficult, and its existence 

does not guarantee that the model will accurately reflect real-world dynamics. 

Additionally, while potential therapeutic applications of these findings have been 

discussed, concrete examples or evidence illustrating how these results can be 

translated into clinical  

 

practice is lacking. This omission could limit the practical impact of the research. It is 

also important to consider that the theoretical nature of this study may lack empirical 

validation through clinical data or real-world EEG recordings. Such validation is 

crucial for establishing the reliability of the proposed models and their predictions. 

Furthermore, the findings may be specific to the types of seizures or conditions studied, 

which could restrict their generalizability to other forms of epilepsy or neurological 

disorders. 

5. Conclusion 

In this study, we investigated the mathematical stability of EEG signal models during 

epileptic seizures, employing integral equations to capture the complex dynamics of 

brain activity. Our findings indicate that the stability of these models is significan tly 

influenced by parameters such as seizure duration, intensity, and neural connectivity. 

The application of Lyapunov's stability theorem has proven essential in understanding 

how small perturbations in initial conditions can affect model behavior. While 2.1 

integral equation-based models present advantages over traditional approaches by 

offering a more accurate representation of transient dynamics, there are notable 

limitations that warrant further exploration. Specifically, the need for more complex 

geometries of neural networks highlights that current models may oversimplify the 

actual neural dynamics, potentially leading to unreliable predictions. Additionally, the 

exploration of the parameter space, particularly concerning neural connectivity and 

seizure intensity, is necessary to enhance the applicability of our findings to real-world  
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scenarios. Moreover, the reliance on the assumption that small changes in initial 

conditions lead to small changes in the solution may not hold true in chaotic systems 

such as the brain. The challenges associated with finding continuously differentiable 

Lyapunov functions can impede the establishment of global asymptotic stability, and 

their existence does not guarantee that the model will accurately reflect real-world 

dynamics. While the study discusses potential therapeutic applications, concrete 

Examples of how these findings can be translated into clinical practice are needed to 

enhance their practical impact. The theoretical nature of this research also points to a 

lack of empirical validation through clinical data or real-world EEG recordings, which 

is crucial for establishing the reliability of the proposed models. Finally, it is important 

to note that the findings of this study may be specific to the types of seizures examined, 

which could limit their generalizability to other forms of epilepsy or neurological 

disorders. 

6. Future Directions 

• Clinical Validation: The future of research needs to be directed towards the 

validation of 2.1 integral equation models in clinical settings; most importantly, real-

time EEG data is to be analysed from patients operating with epilepsy.  

• Integration of Machine Learning: Integration of machine learning methods with such 

mathematical modelling will improve seizure prediction algorithms and give better 

forecasting of seizure events. 

• Parameter Space Exploration and Therapeutic Applications: Clearly, the parameter 

space, with respect to neural connectivity and seizure intensity, has to be explored 

further to provide more insights into the mechanisms for stability. Extension of models 

to more complex geometries of neural networks or linking them to other physiological 

data, such as neuroimaging, may provide higher accuracy. Another fruitful direction 

of work is an investigation of how these models can be used to inform therapeutic 

interventions, including neurostimulation and personalized medication.  
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